We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Advances in bone marrow-derived cell therapy: CD31-expressing cells as next generation cardiovascular cell therapy

    Sung-Whan Kim*

    Department of Cardiology, College of Medicine, Dong-A University, Busan, South Korea

    *Authors contributed equally

    Search for more papers by this author

    ,
    Hyongbum Kim*

    Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seoul, South Korea

    *Authors contributed equally

    Search for more papers by this author

    &
    Young-sup Yoon

    † Author for correspondence

    Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMRB 3309, Atlanta, GA 30322, USA.

    Published Online:https://doi.org/10.2217/rme.11.24

    In the past few years, bone marrow (BM)-derived cells have been used to regenerate damaged cardiovascular tissues post-myocardial infarction. Recent clinical trials have shown controversial results in recovering damaged cardiac tissue. New progress has shown that the underlying mechanisms of cell-based therapy relies more heavily on humoral and paracrine effects rather than on new tissue generation. However, studies have also reported the potential of new endothelial cell generation from BM cells. Thus, efforts have been made to identify cells having higher humoral or therapeutic effects as well as their surface markers. Specifically, BM-derived CD31+ cells were isolated by a surface marker and demonstrated high angio-vasculogenic effects. This article will describe recent advances in the therapeutic use of BM-derived cells and the usefulness of CD31+ cells.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Lloyd-Jones D, Adams R, Carnethon M et al.: Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation119(3),480–486 (2009).
    • Dimmeler S, Zeiher AM, Schneider MD: Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest.115(3),572–583 (2005).
    • Laflamme MA, Murry CE: Regenerating the heart. Nat. Biotechnol.23(7),845–856 (2005).
    • Wollert KC, Drexler H: Clinical applications of stem cells for the heart. Circ. Res.96(2),151–163 (2005).
    • Ferrari G, Cusella-De Angelis G, Coletta M et al.: Muscle regeneration by bone marrow-derived myogenic progenitors. Science279(5356),1528–1530 (1998).
    • Gussoni E, Soneoka Y, Strickland CD et al.: Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature401(6751),390–394 (1999).
    • Jackson KA, Majka SM, Wang H et al.: Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest.107(11),1395–1402 (2001).
    • Orlic D, Kajstura J, Chimenti S et al.: Bone marrow cells regenerate infarcted myocardium. Nature410(6829),701–705 (2001).
    • Krause DS, Theise ND, Collector MI et al.: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell105(3),369–377 (2001).
    • 10  Brazelton TR, Rossi FM, Keshet GI et al.: From marrow to brain: expression of neuronal phenotypes in adult mice. Science290(5497),1775–1779 (2000).
    • 11  Minami E, Laflamme MA, Saffitz JE et al.: Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation112(19),2951–2958 (2005).
    • 12  Laflamme MA, Myerson D, Saffitz JE et al.: Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res.90(6),634–640 (2002).
    • 13  Quaini F, Urbanek K, Beltrami AP et al.: Chimerism of the transplanted heart. N. Engl. J. Med.346(1),5–15 (2002).
    • 14  van Praag H, Schinder AF, Christie BR et al.: Functional neurogenesis in the adult hippocampus. Nature415(6875),1030–1034 (2002).
    • 15  Assmus B, Schachinger V, Teupe C et al.: Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation106(24),3009–3017 (2002).
    • 16  Hare JM, Traverse JH, Henry TD et al.: A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol.54(24),2277–2286 (2009).
    • 17  Assmus B, Rolf A, Erbs S et al.: Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ. Heart Fail.3(1),89–96 (2010).
    • 18  Tatsumi T, Ashihara E, Yasui T et al.: Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ. J.71(8),1199–1207 (2007).
    • 19  Miettinen JA, Ylitalo K, Hedberg P et al.: Determinants of functional recovery after myocardial infarction of patients treated with bone marrow-derived stem cells after thrombolytic therapy. Heart96(5),362–367 (2010).
    • 20  Janssens S, Dubois C, Bogaert J et al.: Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367(9505),113–121 (2006).
    • 21  Lunde K, Solheim S, Aakhus S et al.: Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12),1199–1209 (2006).
    • 22  Meyer GP, Wollert KC, Lotz J et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation113(10),1287–1294 (2006).
    • 23  Penicka M, Horak J, Kobylka P et al.: Intracoronary injection of autologous bone marrow-derived mononuclear cells in patients with large anterior acute myocardial infarction: a prematurely terminated randomized study. J. Am. Coll. Cardiol.49(24),2373–2374 (2007).
    • 24  Gilbert SF: Developmental Biology (5th Edition) Sinauer Associates, Sunderland, MA, USA (1997).
    • 25  Risau W, Flamme I: Vasculogenesis. Annu. Rev. Cell Dev. Biol.11,73–91 (1995).
    • 26  Asahara T, Murohara T, Sullivan A et al.: Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302),964–967 (1997).▪▪ First paper to report the existence of endothelial progenitor cells in adult peripheral blood.
    • 27  Asahara T, Masuda H, Takahashi T et al.: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85(3),221–228 (1999).
    • 28  Kalka C, Masuda H, Takahashi T et al.: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl Acad. Sci. USA97(7),3422–3427 (2000).
    • 29  Shi Q, Rafii S, Wu MH et al.: Evidence for circulating bone marrow-derived endothelial cells. Blood92(2),362–367 (1998).
    • 30  Peichev M, Naiyer AJ, Pereira D et al.: Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood95(3),952–958 (2000).
    • 31  Fernandez Pujol B, Lucibello FC, Gehling UM et al.: Endothelial-like cells derived from human CD14 positive monocytes. Differentiation65(5),287–300 (2000).
    • 32  Dimmeler S, Zeiher AM: Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res.87(6),434–439 (2000).
    • 33  Dimmeler S, Aicher A, Vasa M et al.: HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest.108(3),391–397 (2001).
    • 34  Schmeisser A, Garlichs CD, Zhang H et al.: Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc. Res.49(3),671–680 (2001).
    • 35  Rehman J, Li J, Orschell CM et al.: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation107(8),1164–1169 (2003).
    • 36  Ingram DA, Caplice NM, Yoder MC: Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood106(5),1525–1531 (2005).
    • 37  Gulati R, Jevremovic D, Peterson TE et al.: Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ. Res.93(11),1023–1025 (2003).
    • 38  Hill JM, Zalos G, Halcox JP et al.: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med.348(7),593–600 (2003).
    • 39  Lin Y, Weisdorf DJ, Solovey A et al.: Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest.105(1),71–77 (2000).
    • 40  Ingram DA, Mead LE, Tanaka H et al.: Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood104(9),2752–2760 (2004).▪ Describes the identity of late endothelial progenitor cells and the diversity of endothelial progenitor cells.
    • 41  Yoon CH, Hur J, Park KW et al.: Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation112(11),1618–1627 (2005).
    • 42  Reya T, Morrison SJ, Clarke MF et al.: Stem cells, cancer, and cancer stem cells. Nature414(6859),105–111 (2001).
    • 43  Weissman IL: Stem cells: units of development, units of regeneration, and units in evolution. Cell100(1),157–168 (2000).
    • 44  Goodell MA, Brose K, Paradis G et al.: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183(4),1797–1806 (1996).
    • 45  Murry CE, Soonpaa MH, Reinecke H et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428(6983),664–668 (2004).
    • 46  Balsam LB, Wagers AJ, Christensen JL et al.: Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428(6983),668–673 (2004).
    • 47  Wang J, Zhang S, Rabinovich B et al.: Human CD34+ cells in experimental myocardial infarction: long-term survival, sustained functional improvement, and mechanism of action. Circ. Res.106(12),1904–1911 (2010).
    • 48  Yeh ET, Zhang S, Wu HD et al.: Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation108(17),2070–2073 (2003).
    • 49  Losordo DW, Schatz RA, White CJ et al.: Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a Phase I/IIa double-blind, randomized controlled trial. Circulation115(25),3165–3172 (2007).
    • 50  Kawamoto A, Iwasaki H, Kusano K et al.: CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation114(20),2163–2169 (2006).▪ Provides the first evidence that human peripheral blood-derived CD34+ cells are effective for myocardial ischemia.
    • 51  Flores-Ramirez R, Uribe-Longoria A, Rangel-Fuentes MM et al.: Intracoronary infusion of CD133+ endothelial progenitor cells improves heart function and quality of life in patients with chronic post-infarct heart insufficiency. Cardiovasc. Revasc. Med.11(2),72–78 (2010).
    • 52  Schots R, De Keulenaer G, Schoors D et al.: Evidence that intracoronary-injected CD133+ peripheral blood progenitor cells home to the myocardium in chronic postinfarction heart failure. Exp. Hematol.35(12),1884–1890 (2007).
    • 53  Leor J, Guetta E, Feinberg MS et al.: Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infarcted myocardium. Stem Cells24(3),772–780 (2006).
    • 54  Pittenger MF, Mackay AM, Beck SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science284(5411),143–147 (1999).
    • 55  Madonna R, Geng YJ, De Caterina R: Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler. Thromb. Vasc. Biol.29(11),1723–1729 (2009).
    • 56  Antonucci I, Stuppia L, Kaneko Y et al.: Amniotic fluid as rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant. (2010) (Epub ahead of print).
    • 57  Troyer DL, Weiss ML: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells26(3),591–599 (2008).
    • 58  Ciavarella S, Dammacco F, De Matteo M et al.: Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev.18(8),1211–1220 (2009).
    • 59  Makino S, Fukuda K, Miyoshi S et al.: Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103(5),697–705 (1999).
    • 60  Amado LC, Saliaris AP, Schuleri KH et al.: Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl Acad. Sci. USA102(32),11474–11479 (2005).
    • 61  Jaquet K, Krause KT, Denschel J et al.: Reduction of myocardial scar size after implantation of mesenchymal stem cells in rats: what is the mechanism? Stem Cells Dev.14(3),299–309 (2005).
    • 62  Mangi AA, Noiseux N, Kong D et al.: Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9(9),1195–1201 (2003).
    • 63  Gnecchi M, He H, Liang OD et al.: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11(4),367–368 (2005).
    • 64  Kinnaird T, Stabile E, Burnett MS et al.: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res.94(5),678–685 (2004).▪ Demonstrates that therapeutic effects of mesenchymal stem cells in ischemic heart disease are mainly mediated by paracrine effects.
    • 65  Kinnaird T, Stabile E, Burnett MS et al.: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109(12),1543–1549 (2004).
    • 66  Melo LG, Agrawal R, Zhang L et al.: Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation105(5),602–607 (2002).
    • 67  Wang X, McCullough KD, Franke TF et al.: Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem.275(19),14624–14631 (2000).
    • 68  Tang YL, Tang Y, Zhang YC et al.: Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol.46(7),1339–1350 (2005).
    • 69  Boyle AJ, McNiece IK, Hare JM: Mesenchymal stem cell therapy for cardiac repair. Methods Mol. Biol.660,65–84 (2010).
    • 70  Di Nicola M, Carlo-Stella C, Magni M et al.: Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood99(10),3838–3843 (2002).
    • 71  Krampera M, Glennie S, Dyson J et al.: Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood101(9),3722–3729 (2003).
    • 72  Majumdar MK, Keane-Moore M, Buyaner D et al.: Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci.10(2),228–241 (2003).
    • 73  Barry FP, Murphy JM, English K et al.: Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev.14(3),252–265 (2005).
    • 74  Tolar J, Nauta AJ, Osborn MJ et al.: Sarcoma derived from cultured mesenchymal stem cells. Stem Cells25(2),371–379 (2007).
    • 75  Miura M, Miura Y, Padilla-Nash HM et al.: Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells24(4),1095–1103 (2006).
    • 76  Zhou YF, Bosch-Marce M, Okuyama H et al.: Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res.66(22),10849–10854 (2006).
    • 77  Ziegelhoeffer T, Fernandez B, Kostin S et al.: Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res.94(2),230–238 (2004).
    • 78  Fuchs U, Zittermann A, Suhr O et al.: Heart transplantation in a 68-year-old patient with senile systemic amyloidosis. Am. J. Transplant.5(5),1159–1162 (2005).
    • 79  Kamihata H, Matsubara H, Nishiue T et al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation104(9),1046–1052 (2001).
    • 80  Barcelos LS, Duplaa C, Krankel N et al.: Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ. Res.104(9),1095–1102 (2009).
    • 81  Yoon YS, Wecker A, Heyd L et al.: Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest.115(2),326–338 (2005).
    • 82  Urbich C, Aicher A, Heeschen C et al.: Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell Cardiol.39(5),733–742 (2005).
    • 83  Tateno K, Minamino T, Toko H et al.: Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization. Circ. Res.98(9),1194–1202 (2006).
    • 84  Terada N, Hamazaki T, Oka M et al.: Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416(6880),542–545 (2002).
    • 85  Ying QL, Nichols J, Evans EP et al.: Changing potency by spontaneous fusion. Nature416(6880),545–548 (2002).
    • 86  Nygren JM, Jovinge S, Breitbach M et al.: Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10(5),494–501 (2004).
    • 87  Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425(6961),968–973 (2003).
    • 88  Albelda SM, Muller WA, Buck CA et al.: Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell–cell adhesion molecule. J. Cell Biol.114(5),1059–1068 (1991).
    • 89  Xie Y, Muller WA: Molecular cloning and adhesive properties of murine platelet/endothelial cell adhesion molecule 1. Proc. Natl Acad. Sci. USA90(12),5569–5573 (1993).
    • 90  Muller WA, Weigl SA, Deng X et al.: PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med.178(2),449–460 (1993).
    • 91  Berman ME, Xie Y, Muller WA: Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and β 2 integrin activation. J. Immunol.156(4),1515–1524 (1996).
    • 92  Voermans C, Rood PM, Hordijk PL et al.: Adhesion molecules involved in transendothelial migration of human hematopoietic progenitor cells. Stem Cells18(6),435–443 (2000).
    • 93  Noble KE, Wickremasinghe RG, DeCornet C et al.: Monocytes stimulate expression of the Bcl-2 family member, A1, in endothelial cells and confer protection against apoptosis. J. Immunol.162(3),1376–1383 (1999).
    • 94  Ilan N, Mohsenin A, Cheung L et al.: PECAM-1 shedding during apoptosis generates a membrane-anchored truncated molecule with unique signaling characteristics. FASEB J.15(2),362–372 (2001).
    • 95  Newman PJ, Berndt MC, Gorski J et al.: PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science247(4947),1219–1222 (1990).
    • 96  DeLisser HM, Christofidou-Solomidou M, Strieter RM et al.: Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am. J. Pathol.151(3),671–677 (1997).
    • 97  Matsumura T, Wolff K, Petzelbauer P: Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J. Immunol.158(7),3408–3416 (1997).
    • 98  Cao G, O’Brien CD, Zhou Z et al.: Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am. J. Physiol. Cell Physiol.282(5),C1181–C1190 (2002).
    • 99  Uemura R, Xu M, Ahmad N et al.: Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res.98(11),1414–1421 (2006).
    • 100  Cho HJ, Lee N, Lee JY et al.: Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J. Exp. Med.204(13),3257–3269 (2007).
    • 101  Kim H, Cho HJ, Kim SW et al.: CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ. Res.107(5),602–614 (2010).▪▪ First paper showing that CD31 is a marker to identify highly angiogenic and vasculogenic cells in mouse and human bone marrow hematopoietic cells.
    • 102  Kim SW, Kim H, Cho HJ et al.: Human peripheral blood-derived CD31+ cells have robust angiogenic and vasculogenic properties and are effective for treating ischemic vascular disease. J. Am. Coll. Cardiol.56(7),593–607 (2010).▪▪ First paper showing that human peripheral blood-derived CD31+ cells have superior therapeutic effects over CD31- cells owing to their strong angiogenic and vasculogenic properties.
    • 103  Cho CH, Kammerer RA, Lee HJ et al.: COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc. Natl Acad. Sci. USA101(15),5547–5552 (2004).
    • 104  Jones N, Iljin K, Dumont DJ et al.: Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat. Rev. Mol. Cell Biol.2(4),257–267 (2001).
    • 105  Mammoto A, Connor KM, Mammoto T et al.: A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature457(7233),1103–1108 (2009).
    • 106  Iivanainen E, Nelimarkka L, Elenius V et al.: Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J.17(12),1609–1621 (2003).
    • 107  Koch AE, Polverini PJ, Kunkel SL et al.: Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science258(5089),1798–1801 (1992).
    • 108  Lee P, Goishi K, Davidson AJ et al.: Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc. Natl Acad. Sci. USA99(16),10470–10475 (2002).
    • 109  Lyden D, Hattori K, Dias S et al.: Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med.7(11),1194–1201 (2001).
    • 110  O’Neill TJ 4th, Wamhoff BR, Owens GK et al.: Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ. Res.97(10),1027–1035 (2005).
    • 111  Smits AM, van Laake LW, den Ouden K et al.: Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc. Res.83(3),527–535 (2009).
    • 112  Tang XL, Rokosh DG, Guo Y et al.: Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circ. J.74(3),390–404 (2010).
    • 113  Smith RR, Barile L, Cho HC et al.: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation115(7),896–908 (2007).
    • 114  Nolan DJ, Ciarrocchi A, Mellick AS et al.: Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev.21(12),1546–1558 (2007).
    • 115  Gao D, Nolan DJ, Mellick AS et al.: Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science319(5860),195–198 (2008).
    • 116  Muller-Ehmsen J, Whittaker P, Kloner RA et al.: Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell Cardiol.34(2),107–116 (2002).
    • 117  Musialek P, Tekieli L, Kostkiewicz M et al.: Randomized transcoronary delivery of CD34+ cells with perfusion versus stop-flow method in patients with recent myocardial infarction: early cardiac retention of (99m)Tc-labeled cells activity. J. Nucl. Cardiol.18(1),104–116 (2010).
    • 118  Jeong JO, Kim MO, Kim H et al.: Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation119(5),699–708 (2009).
    • 119  Zocchi MR, Poggi A: Lymphocyte-endothelial cell adhesion molecules at the primary tumor site in human lung and renal cell carcinomas. J. Natl Cancer Inst.85(3),246–247 (1993).
    • 120  Woodfin A, Voisin MB, Nourshargh S: PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol.27(12),2514–2523 (2007).
    • 121  Kawamoto A, Tkebuchava T, Yamaguchi J et al.: Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation107(3),461–468 (2003).
    • 122  Kawamoto A, Katayama M, Handa N et al.: Intramuscular transplantation of G-CSF-mobilized CD34+ cells in patients with critical limb ischemia: a Phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells27(11),2857–2864 (2009).
    • 123  Rafei M, Hsieh J, Zehntner S et al.: A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat. Med.15(9),1038–1045 (2009).
    • 124  Stagg J, Galipeau J: Immune plasticity of bone marrow-derived mesenchymal stromal cells. Handb. Exp. Pharmacol. (180), 45–66 (2007).
    • 125  Kang HJ, Kim HS, Zhang SY et al.: Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet363(9411),751–756 (2004).
    • 126  Horwitz EM, Gordon PL, Koo WK et al.: Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl Acad. Sci. USA99(13),8932–8937 (2002).
    • 127  Yoon YS, Park JS, Tkebuchava T et al.: Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation109(25),3154–3157 (2004).
    • 128  Miyamoto K, Nishigami K, Nagaya N et al.: Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans. Circulation114(24),2679–2684 (2006).
    • 129  Iso Y, Soda T, Sato T et al.: Impact of implanted bone marrow progenitor cell composition on limb salvage after cell implantation in patients with critical limb ischemia. Atherosclerosis209(1),167–172 (2010).
    • 130  Horie T, Onodera R, Akamastu M et al.: Long-term clinical outcomes for patients with lower limb ischemia implanted with G-CSF-mobilized autologous peripheral blood mononuclear cells. Atherosclerosis208(2),461–466 (2010).
    • 131  Al Mheid I, Quyyumi AA: Cell therapy in peripheral arterial disease. Angiology59(6),705–716 (2008).
    • 132  Losordo D, Kibbe M, Mendelsohn F et al.: Randomized, double-blind, placebo controlled trial of autologous CD34+ cell therapy for critical limb ischemia: 1 year results. Circulation122,A16920 (2010).
    • 133  Kim H, Park JS, Choi YJ et al.: Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy. Stem Cells27(7),1686–1696 (2009).
    • 134  Crisan M, Yap S, Casteilla L et al.: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell3(3),301–313 (2008).
    • 135  Campagnolo P, Cesselli D, Al Haj Zen A et al.: Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation121(15),1735–1745 (2010).