We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient?

    ,
    Daniel L Haus*

    Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA; University of California Irvine, 2030 Gross Hall Stem Cell Research Center, Irvine, CA 92697–1705, USA

    Department of Anatomy & Neurobiology, 364 Med Surge II, UC Irvine, Irvine, CA 92697-1275, USA

    *Authors contributed equally

    Search for more papers by this author

    ,
    Mitra J Hooshmand*

    Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA; University of California Irvine, 2030 Gross Hall Stem Cell Research Center, Irvine, CA 92697–1705, USA

    Institute for Memory Impairments & Neurological Disorders, 2642 Biological Sciences III, UC Irvine, Irvine, CA 92697-4545, USA

    Department of Anatomy & Neurobiology, 364 Med Surge II, UC Irvine, Irvine, CA 92697-1275, USA

    *Authors contributed equally

    Search for more papers by this author

    ,
    Harvey Perez*

    Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA; University of California Irvine, 2030 Gross Hall Stem Cell Research Center, Irvine, CA 92697–1705, USA

    CIRM Stem Cell Research Biotechnology Training Program, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA

    *Authors contributed equally

    Search for more papers by this author

    ,
    Christopher J Sontag*

    Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA; University of California Irvine, 2030 Gross Hall Stem Cell Research Center, Irvine, CA 92697–1705, USA

    Institute for Memory Impairments & Neurological Disorders, 2642 Biological Sciences III, UC Irvine, Irvine, CA 92697-4545, USA

    Department of Anatomy & Neurobiology, 364 Med Surge II, UC Irvine, Irvine, CA 92697-1275, USA

    *Authors contributed equally

    Search for more papers by this author

    &
    Brian J Cummings

    Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA; University of California Irvine, 2030 Gross Hall Stem Cell Research Center, Irvine, CA 92697–1705, USA

    Institute for Memory Impairments & Neurological Disorders, 2642 Biological Sciences III, UC Irvine, Irvine, CA 92697-4545, USA

    Department of Anatomy & Neurobiology, 364 Med Surge II, UC Irvine, Irvine, CA 92697-1275, USA

    Physical Medicine & Rehabilitation, UCI Medical Center, 101 The City Drive, Bldg 53, Orange, CA 9286, USA

    Published Online:https://doi.org/10.2217/rme.11.22

    There is potential for a variety of stem cell populations to mediate repair in the diseased or injured CNS; in some cases, this theoretical possibility has already transitioned to clinical safety testing. However, careful consideration of preclinical animal models is essential to provide an appropriate assessment of stem cell safety and efficacy, as well as the basic biological mechanisms of stem cell action. This article examines the lessons learned from early tissue, organ and hematopoietic grafting, the early assumptions of the stem cell and CNS fields with regard to immunoprivilege, and the history of success in stem cell transplantation into the CNS. Finally, we discuss strategies in the selection of animal models to maximize the predictive validity of preclinical safety and efficacy studies.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • Keirstead HS, Nistor G, Bernal G et al.: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci.25(19),4694–4705 (2005).
    • Cummings BJ, Uchida N, Tamaki SJ et al.: Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc. Natl Acad. Sci. USA102(39),14069–14074 (2005).▪ First study to use an immunodeficient mouse model for human neural stem cell transplantation into the injured CNS.
    • Lu B, Malcuit C, Wang S et al.: Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells27(9),2126–2135 (2009).
    • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282(5391),1145–1147 (1998).
    • Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • Gage FH: Mammalian neural stem cells. Science287(5457),1433–1438 (2000).
    • Yan J, Xu L, Welsh AM et al.: Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med.4(2),e39 (2007).
    • Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH: Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol. Cell Neurosci.16(3),197–205 (2000).
    • Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY: Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol.20(11),1103–1110 (2002).
    • 10  Ishii K, Nakamura M, Dai H et al.: Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J. Neurosci. Res.84(8),1669–1681 (2006).
    • 11  Henry L, Marshall DC, Friedman EA, Goldstein DP, Dammin GJ: A histological study of the human skin graft. Am. J. Pathol.39,317–332 (1961).
    • 12  Murray JE, Merrill JP, Harrison JH: Kidney transplantation between seven pairs of identical twins. Ann. Surg.148(3),343–359 (1958).
    • 13  Turner D: The human leucocyte antigen (HLA) system. Vox Sang.87(Suppl. 1),87–90 (2004).
    • 14  Iwanami A, Kaneko S, Nakamura M et al.: Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res.80(2),182–190 (2005).
    • 15  Redmond DE Jr, Bjugstad KB, Teng YD et al.: Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc. Natl Acad. Sci. USA104(29),12175–12180 (2007).
    • 16  Pluchino S, Gritti A, Blezer E et al.: Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann. Neurol.66(3),343–354 (2009).
    • 17  Dressel R, Schindehutte J, Kuhlmann T et al.: The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients’ immune response. PLoS One3(7),e2622 (2008).
    • 18  Przyborski SA: Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells23(9),1242–1250 (2005).
    • 19  Billingham RE, Krohn PL, Medawar PB: Effect of cortisone on survival of skin homografts in rabbits. BMJ1(4716),1157–1163 (1951).▪ Among the first publications to report differences in survival of tissue grafts due to drug treatment.
    • 20  Ono E, Schwinzer R, Wonigeit K, Pichlmayr R: Suppressor cell activity of isolated T-cell subsets in successful organ transplant recipients. Transplant Proc.19(5),4265–4267 (1987).
    • 21  Billingham RE, Brent L: Quantitative studies on tissue transplantation immunity. IV. Induction of tolerance in newborn mice and studies on the phenomenon of runt disease. Philos. T. Assoc. Am. Physicians242,439–477 (1959).
    • 22  Thomas ED: A history of haemopoietic cell transplantation. Br. J. Haematol.105(2),330–339 (1999).
    • 23  Uphoff DE: Genetic factors influencing irradiation protection by bone marrow. I. The F1 hybrid effect. J. Natl Cancer Inst.19(1),123–130 (1957).
    • 24  Uphoff DE: Alteration of homograft reaction by A-methopterin in lethally irradiated mice treated with homologous marrow. Proc. Soc. Exp. Biol. Med.99(3),651–653 (1958).
    • 25  Lochte HL Jr, Levy AS, Guenther DM, Thomas ED, Ferrebee JW: Prevention of delayed foreign marrow reaction in lethally irradiated mice by early administration of methotrexate. Nature196,1110–1111 (1962).
    • 26  Thomas ED, Collins JA, Herman EC Jr, Ferrebee JW: Marrow transplants in lethally irradiated dogs given methotrexate. Blood19,217–228 (1962).
    • 27  Storb R, Epstein RB, Rudolph RH, Thomas ED: The effect of prior transfusion on marrow grafts between histocompatible canine siblings. J. Immunol.105(3),627–633 (1970).
    • 28  Epstein RB, Storb R, Clift RA, Thomas ED: Transplantation of stored allogeneic bone marrow in dogs selected by histocompatibility typing. Transplantation8(4),496–501 (1969).
    • 29  Epstein RB, Storb R, Ragde H, Thomas ED: Cytotoxic typing antisera for marrow grafting in littermate dogs. Transplantation6(1),45–58 (1968).
    • 30  Epstein RB, Storb R, Clift RA, Thomas ED: Autologous bone marrow grafts in dogs treated with lethal doses of cyclophosphamide. Cancer Res.29(5),1072–1075 (1969).
    • 31  Thomas ED, Buckner CD, Banaji M et al.: One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood49(4),511–533 (1977).
    • 32  Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA: Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet2(7583),1366–1369 (1968).
    • 33  Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM: Bone-marrow transplantation in a patient with the Wiskott–Aldrich syndrome. Lancet2(7583),1364–1366 (1968).
    • 34  De Koning J, Van Bekkum DW, Dicke KA, Dooren LJ, Radl J, Van Rood JJ: Transplantation of bone-marrow cells and fetal thymus in an infant with lymphopenic immunological deficiency. Lancet1(7608),1223–1227 (1969).
    • 35  Bortin MM, Bach FH, van Bekkum DW, Good RA, van Rood JJ: 25th anniversary of the first successful allogeneic bone marrow transplants. Bone Marrow Transplant.14(2),211–212 (1994).
    • 36  Bosma GC, Custer RP, Bosma MJ: A severe combined immunodeficiency mutation in the mouse. Nature301(5900),527–530 (1983).▪ Important paper identifying a mutation in mice that impairs immune function mediated by T and B lymphocytes.
    • 37  Mosier DE, Gulizia RJ, Baird SM, Wilson DB: Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature335(6187),256–259 (1988).▪ First paper published utilizing immunodeficient mice to achieve successful immune system reconstitution with human peripheral blood leukocytes.
    • 38  Dick JE, Kamel-Reid S, Murdoch B, Doedens M: Gene transfer into normal human hematopoietic cells using in vitro and in vivo assays. Blood78(3),624–634 (1991).
    • 39  Kollmann TR, Kim A, Zhuang X, Hachamovitch M, Goldstein H: Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines. Proc. Natl Acad. Sci. USA91(17),8032–8036 (1994).
    • 40  Vormoor J, Lapidot T, Pflumio F et al.: SCID mice as an in vivo model of human cord blood hematopoiesis. Blood Cells20(2–3),316–320; discussion 320–312 (1994).
    • 41  Barker RA, Widner H: Immune problems in CNS cell therapy. NeuroRx1(4),472–481 (2004).
    • 42  Bromberg JS, Heeger PS, Li XC: Evolving paradigms that determine the fate of an allograft. Am. J. Transplant.10(5),1143–1148 (2010).
    • 43  Zhuo M, Fujiki M, Wang M et al.: Identification of the rat NKG2D ligands, RAE1L and RRLT, and their role in allograft rejection. Eur. J. Immunol.40(6),1748–1757 (2010).
    • 44  Kawahara T, Douglas DN, Lewis J et al.: Critical role of natural killer cells in the rejection of human hepatocytes after xenotransplantation into immunodeficient mice. Transpl. Int.23(9),934–943 (2010).
    • 45  Ma M, Ding S, Lundqvist A et al.: Major histocompatibility complex-I expression on embryonic stem cell-derived vascular progenitor cells is critical for syngeneic transplant survival. Stem Cells28(9),1465–1475 (2010).
    • 46  Karre K: Natural killer cell recognition of missing self. Nat. Immunol.9(5),477–480 (2008).
    • 47  Li S, Waer M, Billiau AD: Xenotransplantation: role of natural immunity. Transpl. Immunol.21(2),70–74 (2009).
    • 48  Dorling A, Lechler RI: T cell-mediated xenograft rejection: specific tolerance is probably required for long term xenograft survival. Xenotransplantation5(4),234–245 (1998).
    • 49  Azimzadeh A, Meyer C, Ravanat C, Cazenave JP, Wolf P: Xenograft rejection: molecular mechanisms and therapeutic prospects. Hematol. Cell Ther.38(4),331–343 (1996).
    • 50  Bennett WM, Norman DJ: Action and toxicity of cyclosporine. Annu. Rev. Med.37,215–224 (1986).
    • 51  Dumont FJ: FK506, an immunosuppressant targeting calcineurin function. Curr. Med. Chem.7(7),731–748 (2000).
    • 52  Caldwell MA, He X, Wilkie N et al.: Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotechnol.19(5),475–479 (2001).
    • 53  Flax JD, Aurora S, Yang C et al.: Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol.16(11),1033–1039 (1998).
    • 54  Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Bjorklund A: Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci.19(14),5990–6005 (1999).
    • 55  Anderson L, Burnstein RM, He X et al.: Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp. Neurol.204(2),512–524 (2007).
    • 56  Kishi Y, Takahashi J, Koyanagi M et al.: Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells. J. Neurosci. Res.79(3),279–286 (2005).
    • 57  Yasuhara T, Matsukawa N, Hara K et al.: Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J. Neurosci.26(48),12497–12511 (2006).
    • 58  Soper BW, Lessard MD, Jude CD, Schuldt AJ, Bunte RM, Barker JE: Successful allogeneic neonatal bone marrow transplantation devoid of myeloablation requires costimulatory blockade. J. Immunol.171(6),3270–3277 (2003).
    • 59  Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD: High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J. Infect. Dis.172(4),974–982 (1995).
    • 60  de Mattos AM, Olyaei AJ, Bennett WM: Nephrotoxicity of immunosuppressive drugs: long-term consequences and challenges for the future. Am. J. Kidney Dis.35(2),333–346 (2000).
    • 61  Wu Q, Marescaux C, Wolff V et al.: Tacrolimus-associated posterior reversible encephalopathy syndrome after solid organ transplantation. Eur. Neurol.64(3),169–177 (2010).
    • 62  Yamauchi A, Oishi R, Kataoka Y: Tacrolimus-induced neurotoxicity and nephrotoxicity is ameliorated by administration in the dark phase in rats. Cell Mol. Neurobiol.24(5),695–704 (2004).
    • 63  Dumont FJ, Staruch MJ, Koprak SL et al.: The immunosuppressive and toxic effects of FK-506 are mechanistically related: pharmacology of a novel antagonist of FK-506 and rapamycin. J. Exp. Med.176(3),751–760 (1992).
    • 64  Kochi S, Takanaga H, Matsuo H et al.: Induction of apoptosis in mouse brain capillary endothelial cells by cyclosporin A and tacrolimus. Life Sci.66(23),2255–2260 (2000).
    • 65  Song LH, Pan W, Yu YH, Quarles LD, Zhou HH, Xiao ZS: Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol. In Vitro20(6),915–922 (2006).
    • 66  Isomoto S, Hattori K, Ohgushi H, Nakajima H, Tanaka Y, Takakura Y: Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells. J. Orthop. Sci.12(1),83–88 (2007).
    • 67  Wang B, Xiao Z, Chen B et al.: Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS One3(3),e1856 (2008).
    • 68  Shultz LD, Ishikawa F, Greiner DL: Humanized mice in translational biomedical research. Nat. Rev. Immunol.7(2),118–130 (2007).
    • 69  Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE: Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science255(5048),1137–1141 (1992).
    • 70  Korsgren O, Jansson L: Discordant cellular xenografts revascularized in intermediate athymic hosts fail to induce a hyperacute rejection when transplanted to immunocompetent rats. Transplantation57(9),1408–1411 (1994).
    • 71  Korsgren O, Jansson L, Eizirik D, Andersson A: Functional and morphological differentiation of fetal porcine islet-like cell clusters after transplantation into nude mice. Diabetologia34(6),379–386 (1991).
    • 72  Kofidis T, deBruin JL, Tanaka M et al.: They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur. J. Cardiothorac. Surg.28(3),461–466 (2005).
    • 73  Swijnenburg RJ, Schrepfer S, Govaert JA et al.: Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc. Natl Acad. Sci. USA105(35),12991–12996 (2008).
    • 74  Greiner DL, Hesselton RA, Shultz LD: SCID mouse models of human stem cell engraftment. Stem Cells16(3),166–177 (1998).
    • 75  Pearson T, Greiner DL, Shultz LD: Humanized SCID mouse models for biomedical research. Curr. Top Microbiol. Immunol.324,25–51 (2008).
    • 76  Shultz LD, Schweitzer PA, Christianson SW et al.: Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol.154(1),180–191 (1995).
    • 77  Blunt T, Finnie NJ, Taccioli GE et al.: Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell80(5),813–823 (1995).
    • 78  Bosma GC, Fried M, Custer RP, Carroll A, Gibson DM, Bosma MJ: Evidence of functional lymphocytes in some (leaky) SCID mice. J. Exp. Med.167(3),1016–1033 (1988).
    • 79  Bernard D, Peakman M, Hayday AC: Establishing humanized mice using stem cells: maximizing the potential. Clin. Exp. Immunol.152(3),406–414 (2008).
    • 80  Poulton LD, Smyth MJ, Hawke CG et al.: Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int. Immunol.13(7),887–896 (2001).
    • 81  Kollet O, Peled A, Byk T et al.: β2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood95(10),3102–3105 (2000).
    • 82  Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: RAG-1-deficient mice have no mature B and T lymphocytes. Cell68(5),869–877 (1992).
    • 83  Shinkai Y, Rathbun G, Lam KP et al.: RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68(5),855–867 (1992).
    • 84  Ito M, Kobayashi K, Nakahata T: NOD/Shi-scid IL2rγ(null) (NOG) mice more appropriate for humanized mouse models. Curr. Top. Microbiol. Immunol.324,53–76 (2008).
    • 85  Ito M, Hiramatsu H, Kobayashi K et al.: NOD/SCID/γ(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood100(9),3175–3182 (2002).
    • 86  Cao X, Shores EW, Hu-Li J et al.: Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity2(3),223–238 (1995).
    • 87  Rolstad B: The athymic nude rat: an animal experimental model to reveal novel aspects of innate immune responses? Immunol. Rev.184,136–144 (2001).
    • 88  de Jong WH, Steerenberg PA, Ursem PS, Osterhaus AD, Vos JG, Ruitenberg EJ: The athymic nude rat. III. Natural cell-mediated cytotoxicity. Clin. Immunol. Immunopathol.17(2),163–172 (1980).
    • 89  Lin Y, Vandeputte M, Waer M: Natural killer cell- and macrophage-mediated rejection of concordant xenografts in the absence of T and B cell responses. J. Immunol.158(12),5658–5667 (1997).
    • 90  Lapidot T, Fajerman Y, Kollet O: Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis. J. Mol. Med.75(9),664–673 (1997).
    • 91  Billingham RE, Boswell T: Studies on the problem of corneal homografts. Proc. R Soc. Lond. B Biol. Sci.141(904),392–406 (1953).
    • 92  Barker CF, Billingham RE: Immunologically privileged sites. Adv. Immunol.25,1–54 (1977).
    • 93  Prins RM, Liau LM: Immunology and immunotherapy in neurosurgical disease. Neurosurgery53(1),144–152; discussion 152–143 (2003).
    • 94  Hickey WF: Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol.1(2),97–105 (1991).
    • 95  Chastain EM, Duncan DS, Rodgers JM, Miller SD: The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta1812(2),265–274 (2011).
    • 96  Clapham R, O’Sullivan E, Weller RO, Carare RO: Cervical lymph nodes are found in direct relationship with the internal carotid artery: significance for the lymphatic drainage of the brain. Clin. Anat.23(1),43–47 (2010).
    • 97  Menendez P, Bueno C, Wang L, Bhatia M: Human embryonic stem cells: potential tool for achieving immunotolerance? Stem Cell Rev.1(2),151–158 (2005).
    • 98  Li L, Baroja ML, Majumdar A et al.: Human embryonic stem cells possess immune-privileged properties. Stem Cells22(4),448–456 (2004).
    • 99  Michel-Monigadon D, Bonnamain V, Nerriere-Daguin V et al.: Trophic and immunoregulatory properties of neural precursor cells: Benefit for intracerebral transplantation. Exp. Neurol. (2010) (Epub ahead of print).
    • 100  Drukker M, Katz G, Urbach A et al.: Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl Acad. Sci. USA99(15),9864–9869 (2002).
    • 101  Drukker M, Katchman H, Katz G et al.: Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells24(2),221–229 (2006).
    • 102  Robertson NJ, Brook FA, Gardner RL, Cobbold SP, Waldmann H, Fairchild PJ: Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc. Natl Acad. Sci. USA104(52),20920–20925 (2007).
    • 103  Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ: Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells21(4),405–416 (2003).
    • 104  Mammolenti M, Gajavelli S, Tsoulfas P, Levy R: Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T lymphocytes in vitro. Stem Cells22(6),1101–1110 (2004).
    • 105  Odeberg J, Piao JH, Samuelsson EB, Falci S, Akesson E: Low immunogenicity of in vitro-expanded human neural cells despite high MHC expression. J. Neuroimmunol.161(1–2),1–11 (2005).
    • 106  Buja LM, Vela D: Immunologic and inflammatory reactions to exogenous stem cells implications for experimental studies and clinical trials for myocardial repair. J. Am. Coll. Cardiol.56(21),1693–1700 (2010).
    • 107  English K, Wood KJ: Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr. Opin. Organ Transplant. (2010) (Epub ahead of print).
    • 108  Laguna Goya R, Busch R, Mathur R, Coles AJ, Barker RA: Human fetal neural precursor cells can up-regulate MHC class I and class II expression and elicit CD4 and CD8 T cell proliferation. Neurobiol. Dis.41(2),407–414 (2011).
    • 109  Bifari F, Luciano P, Krampera M: Immunological properties of embryonic and adult stem cells. World J. Stem Cells2(3),50–60 (2010).
    • 110  Yin L, Fu SL, Shi GY et al.: Expression and regulation of major histocompatibility complex on neural stem cells and their lineages. Stem Cells Dev.17(1),53–65 (2008).
    • 111  Ubiali F, Nava S, Nessi V et al.: Allorecognition of human neural stem cells by peripheral blood lymphocytes despite low expression of MHC molecules: role of TGF-β in modulating proliferation. Int. Immunol.19(9),1063–1074 (2007).
    • 112  Preynat-Seauve O, de Rham C, Tirefort D, Ferrari-Lacraz S, Krause KH, Villard J: Neural progenitors derived from human embryonic stem cells are targeted by allogeneic T and natural killer cells. J. Cell Mol. Med.13(9B),3556–3569 (2009).
    • 113  Molcanyi M, Riess P, Bentz K et al.: Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. J. Neurotrauma24(4),625–637 (2007).
    • 114  Coggeshall RE, Lekan HA: Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J. Comp. Neurol.364(1),6–15 (1996).
    • 115  Schmitz C, Hof PR: Design-based stereology in neuroscience. Neuroscience130(4),813–831 (2005).▪ Detailed review on the types and advantages of stereological analyses that can be performed in the CNS.
    • 116  Hurelbrink CB, Armstrong RJ, Dunnett SB, Rosser AE, Barker RA: Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. Eur. J. Neurosci.15(7),1255–1266 (2002).
    • 117  Takahashi Y, Tsuji O, Kumagai G et al.: Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant. (2010) (Epub ahead of print).
    • 118  Lee HJ, Kim MK, Kim HJ, Kim SU: Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One4(5),e5586 (2009).
    • 119  Suzuki M, McHugh J, Tork C et al.: GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One2(1),e689 (2007).
    • 120  Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T: Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J. Neurosurg.100(1),88–96 (2004).
    • 121  Deng C, Gorrie C, Hayward I et al.: Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J. Neurosci. Res.83(7),1201–1212 (2006).
    • 122  Lang DS, Meier KL, Luster MI: Comparative effects of immunotoxic chemicals on in vitro proliferative responses of human and rodent lymphocytes. Fundam. Appl. Toxicol.21(4),535–545 (1993).
    • 123  Grinnemo KH, Sylven C, Hovatta O, Dellgren G, Corbascio M: Immunogenicity of human embryonic stem cells. Cell Tissue Res.331(1),67–78 (2008).
    • 124  Adewumi O, Aflatoonian B, Ahrlund-Richter L et al.: Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol.25(7),803–816 (2007).
    • 125  Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA: Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet366(9502),2019–2025 (2005).
    • 126  Cobbold SP, Adams E, Graca L et al.: Immune privilege induced by regulatory T cells in transplantation tolerance. Immunol. Rev.213,239–255 (2006).
    • 127  Waldmann H, Chen TC, Graca L et al.: Regulatory T cells in transplantation. Semin. Immunol.18(2),111–119 (2006).
    • 128  Csete M: Translational prospects for human induced pluripotent stem cells. Regen. Med.5(4),509–519 (2010).
    • 129  Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat. Rev. Neurol.6(4),193–201 (2010).
    • 130  Rivest S: Regulation of innate immune responses in the brain. Nat. Rev. Immunol.9(6),429–439 (2009).
    • 131  Qian L, Flood PM, Hong JS: Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J. Neural. Transm.117(8),971–979 (2010).
    • 132  Carty M, Bowie AG: Evaluating the role of Toll-like Receptors in diseases of the CNS. Biochem. Pharmacol.81(7),825–837 (2011).
    • 133  Becker KJ: Modulation of the postischemic immune response to improve stroke outcome. Stroke41(Suppl. 10),S75–S78 (2010).
    • 134  Alexander JK, Popovich PG: Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Prog. Brain Res.175,125–137 (2009).
    • 135  Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ: Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain133(Pt 2),433–447 (2010).
    • 136  Luchetti S, Beck KD, Galvan MD, Silva R, Cummings BJ, Anderson AJ: Comparison of immunopathology and locomotor recovery in C57BL/6, BUB/BnJ, and NOD-SCID mice after contusion spinal cord injury. J. Neurotrauma27(2),411–421 (2010).
    • 137  Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Bjorklund A: Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci.19(14),5990–6005 (1999).
    • 138  Kishi Y, Takahashi J, Koyanagi M et al.: Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells. J. Neurosci. Res.79(3),279–286 (2005).
    • 139  Englund U, Bjorklund A, Wictorin K: Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Brain Res. Dev. Brain Res.134(1–2),123–141 (2002).
    • 140  Kallur T, Darsalia V, Lindvall O, Kokaia Z: Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J. Neurosci. Res.84(8),1630–1644 (2006).
    • 141  Kallur T, Gisler R, Lindvall O, Kokaia Z: Pax6 promotes neurogenesis in human neural stem cells. Mol. Cell Neurosci.38(4),616–628 (2008).
    • 142  Ogawa D, Okada Y, Nakamura M et al.: Evaluation of human fetal neural stem/progenitor cells as a source for cell replacement therapy for neurological disorders: properties and tumorigenicity after long-term in vitro maintenance. J. Neurosci. Res.87(2),307–317 (2009).
    • 143  Al Nimer F, Wennersten A, Holmin S, Meijer X, Wahlberg L, Mathiesen T: MHC expression after human neural stem cell transplantation to brain contused rats. Neuroreport15(12),1871–1875 (2004).
    • 144  Alexanian AR, Svendsen CN, Crowe MJ, Kurpad SN: Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia. Cytotherapy13(1),61–68 (2011).
    • 145  Cho GW, Koh SH, Kim MH et al.: The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res.1353,1–13 (2010).
    • 146  Cloutier F, Siegenthaler MM, Nistor G, Keirstead HS: Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen. Med.1(4),469–479 (2006).
    • 147  Daadi MM, Maag AL, Steinberg GK: Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One3(2),e1644 (2008).
    • 148  Darsalia V, Kallur T, Kokaia Z: Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur. J. Neurosci.26(3),605–614 (2007).
    • 149  Darsalia V, Allison SJ, Cusulin C et al.: Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J. Cereb. Blood Flow Metab.31(1),235–242 (2011).
    • 150  Dasari VR, Spomar DG, Gondi CS et al.: Axonal remyelination by cord blood stem cells after spinal cord injury. J. Neurotrauma24(2),391–410 (2007).
    • 151  Dasari VR, Spomar DG, Li L, Gujrati M, Rao JS, Dinh DH: Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem. Res.33(1),134–149 (2008).
    • 152  Eaton MJ, Wolfe SQ, Martinez M et al.: Subarachnoid transplant of a human neuronal cell line attenuates chronic allodynia and hyperalgesia after excitotoxic spinal cord injury in the rat. J. Pain8(1),33–50 (2007).
    • 153  Gao J, Prough DS, McAdoo DJ et al.: Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp. Neurol.201(2),281–292 (2006).
    • 154  Erceg S, Ronaghi M, Oria M et al.: Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells28(9),1541–1549 (2010).
    • 155  Hatami M, Mehrjardi NZ, Kiani S et al.: Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy11(5),618–630 (2009).
    • 156  Hicks AU, Lappalainen RS, Narkilahti S et al.: Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur. J. Neurosci.29(3),562–574 (2009).
    • 157  Himes BT, Neuhuber B, Coleman C et al.: Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil. Neural Repair20(2),278–296 (2006).
    • 158  Honma T, Honmou O, Iihoshi S et al.: Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp. Neurol.199(1),56–66 (2006).
    • 159  Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD: Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J. Neurosci. Res.84(7),1495–1504 (2006).
    • 160  Hwang DH, Kim BG, Kim EJ et al.: Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci.10,117 (2009).
    • 161  Kamada T, Koda M, Dezawa M et al.: Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord. Neuropathology31(1),48–58 (2010).
    • 162  Keirstead HS, Nistor G, Bernal G et al.: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci.25(19),4694–4705 (2005).
    • 163  Kelly S, Bliss TM, Shah AK et al.: Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl Acad. Sci. USA101(32),11839–11844 (2004).
    • 164  Kerr CL, Letzen BS, Hill CM et al.: Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int. J. Neurosci.120(4),305–313 (2010).
    • 165  Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG: Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One4(3),e4987 (2009).
    • 166  Koh SH, Kim KS, Choi MR et al.: Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res.1229,233–248 (2008).
    • 167  Kurozumi K, Nakamura K, Tamiya T et al.: BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol. Ther.9(2),189–197 (2004).
    • 168  Kurozumi K, Nakamura K, Tamiya T et al.: Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther.11(1),96–104 (2005).
    • 169  Longhi L, Watson DJ, Saatman KE et al.: Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J. Neurotrauma21(12),1723–1736 (2004).
    • 170  Omori Y, Honmou O, Harada K, Suzuki J, Houkin K, Kocsis JD: Optimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats. Brain Res.1236,30–38 (2008).
    • 171  Park WB, Kim SY, Lee SH, Kim HW, Park JS, Hyun JK: The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. BMC Neurosci.11,119 (2010).
    • 172  Rossi SL, Nistor G, Wyatt T et al.: Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord. PLoS One5(7),e11852 (2010).
    • 173  Samdani AF, Paul C, Betz RR, Fischer I, Neuhuber B: Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study. Spine (Phila Pa 1976)34(24),2605–2612 (2009).
    • 174  Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR: Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J. Hematother. Stem Cell Res.12(3),271–278 (2003).
    • 175  Sasaki M, Radtke C, Tan AM et al.: BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J. Neurosci.29(47),14932–14941 (2009).
    • 176  Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells28(1),152–163 (2010).
    • 177  Skardelly M, Gaber K, Burdack S et al.: Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J. Neurotrauma28(3),401–414 (2010).
    • 178  Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J: The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil. Neural Repair23(9),895–909 (2009).
    • 179  Tarasenko YI, Gao J, Nie L et al.: Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J. Neurosci. Res.85(1),47–57 (2007).
    • 180  Watson DJ, Longhi L, Lee EB et al.: Genetically modified NT2N human neuronal cells mediate long-term gene expression as CNS grafts in vivo and improve functional cognitive outcome following experimental traumatic brain injury. J. Neuropathol. Exp. Neurol.62(4),368–380 (2003).
    • 181  Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T: Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J. Neurosurg.100(1),88–96 (2004).
    • 182  Wennersten A, Holmin S, Al Nimer F, Meijer X, Wahlberg LU, Mathiesen T: Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp. Neurol.199(2),339–347 (2006).
    • 183  Xiao M, Klueber KM, Lu C et al.: Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp. Neurol.194(1),12–30 (2005).
    • 184  Zhang C, Saatman KE, Royo NC et al.: Delayed transplantation of human neurons following brain injury in rats: a long-term graft survival and behavior study. J. Neurotrauma22(12),1456–1474 (2005).
    • 185  Zhang L, Zhang HT, Hong SQ, Ma X, Jiang XD, Xu RX: Cografted Wharton’s jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochem. Res.34(11),2030–2039 (2009).
    • 186  Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC: Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol.174(1),11–20 (2002).
    • 187  Zheng W, Honmou O, Miyata K et al.: Therapeutic benefits of human mesenchymal stem cells derived from bone marrow after global cerebral ischemia. Brain Res.1310,8–16 (2010).
    • 188  Chen J, Zhang ZG, Li Y et al.: Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res.92(6),692–699 (2003).
    • 189  Chen Z, Tortella FC, Dave JR et al.: Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration. J. Neurotrauma26(11),1987–1997 (2009).
    • 190  Chen Z, Lu XC, Shear DA et al.: Synergism of human amnion-derived multipotent progenitor (AMP) cells and a collagen scaffold in promoting brain wound recovery: pre-clinical studies in an experimental model of penetrating ballistic-like brain injury. Brain Res.1368,71–81 (2011).
    • 191  Deng C, Gorrie C, Hayward I et al.: Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J. Neurosci. Res.83(7),1201–1212 (2006).
    • 192  Ding DC, Shyu WC, Chiang MF et al.: Enhancement of neuroplasticity through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol. Dis.27(3),339–353 (2007).
    • 193  Fang KM, Chen JK, Hung SC et al.: Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair. PLoS One5(12),e15299 (2010).
    • 194  Fatar M, Stroick M, Griebe M et al.: Lipoaspirate-derived adult mesenchymal stem cells improve functional outcome during intracerebral hemorrhage by proliferation of endogenous progenitor cells stem cells in intracerebral hemorrhages. Neurosci. Lett.443(3),174–178 (2008).
    • 195  Hagan M, Wennersten A, Meijer X, Holmin S, Wahlberg L, Mathiesen T: Neuroprotection by human neural progenitor cells after experimental contusion in rats. Neurosci. Lett.351(3),149–152 (2003).
    • 196  Heile AM, Wallrapp C, Klinge PM et al.: Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci. Lett.463(3),176–181 (2009).
    • 197  Hu SL, Luo HS, Li JT et al.: Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit. Care Med.38(11),2181–2189 (2010).
    • 198  Hung CJ, Yao CL, Cheng FC, Wu ML, Wang TH, Hwang SM: Establishment of immortalized mesenchymal stromal cells with red fluorescence protein expression for in vivo transplantation and tracing in the rat model with traumatic brain injury. Cytotherapy12(4),455–465 (2010).
    • 199  Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK: Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke34(9),2258–2263 (2003).
    • 200  Kim HJ, Lee JH, Kim SH: Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma27(1),131–138 (2010).
    • 201  Lee HJ, Kim MK, Kim HJ, Kim SU: Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One4(5),e5586 (2009).
    • 202  Lee ST, Chu K, Jung KH et al.: Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain131(Pt 3),616–629 (2008).
    • 203  Liang H, Liang P, Xu Y, Wu J, Liang T, Xu X: DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats. J. Neurotrauma26(10),1745–1757 (2009).
    • 204  Liao W, Zhong J, Yu J et al.: Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol. Biochem.24(3–4),307–316 (2009).
    • 205  Liu AM, Lu G, Tsang KS et al.: Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery67(2),357–365; discussion 365–356 (2010).
    • 206  Liu H, Honmou O, Harada K et al.: Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain129,2734–2745 (2006).
    • 207  Lu D, Mahmood A, Qu C, Hong X, Kaplan D, Chopp M: Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery61(3),596–602; discussion 602–593 (2007).
    • 208  Lundberg J, Le Blanc K, Soderman M, Andersson T, Holmin S: Endovascular transplantation of stem cells to the injured rat CNS. Neuroradiology51(10),661–667 (2009).
    • 209  Mahmood A, Lu D, Lu M, Chopp M: Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery53(3),697–702; discussion 702–693 (2003).
    • 210  Mahmood A, Lu D, Qu C, Goussev A, Chopp M: Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery57(5),1026–1031; discussion 1026–1031 (2005).
    • 211  Muir JK, Raghupathi R, Saatman KE et al.: Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain. J. Neurotrauma16(5),403–414 (1999).
    • 212  Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD: I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience136(1),161–169 (2005).
    • 213  Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD: Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J. Cereb. Blood Flow Metab.28(2),329–340 (2008).
    • 214  Philips MF, Muir JK, Saatman KE et al.: Survival and integration of transplanted postmitotic human neurons following experimental brain injury in immunocompetent rats. J. Neurosurg.90(1),116–124 (1999).
    • 215  Qu C, Xiong Y, Mahmood A et al.: Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds. J. Neurosurg.111(4),658–665 (2009).
    • 216  Shyu WC, Chen CP, Lin SZ, Lee YJ, Li H: Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats. Stroke38(2),367–374 (2007).
    • 217  Skvortsova VI, Gubskiy LV, Tairova RT et al.: Use of bone marrow mesenchymal (stromal) stem cells in experimental ischemic stroke in rats. Bull. Exp. Biol. Med.145(1),122–128 (2008).
    • 218  Song M, Kim Y, Ryu S, Song I, Kim SU, Yoon BW: MRI tracking of intravenously transplanted human neural stem cells in rat focal ischemia model. Neurosci. Res.64(2),235–239 (2009).
    • 219  Toyama K, Honmou O, Harada K et al.: Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp. Neurol.216(1),47–55 (2009).
    • 220  Wakabayashi K, Nagai A, Sheikh AM et al.: Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J. Neurosci. Res.88(5),1017–1025 (2010).
    • 221  Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS: Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One3(10),e3336 (2008).
    • 222  Zhang P, Li J, Liu Y, Chen X, Kang Q: Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology29(4),410–421 (2009).
    • 223  Zhu J, Zhou Z, Liu Y, Zheng J: Fractalkine and CX3CR1 are involved in the migration of intravenously grafted human bone marrow stromal cells toward ischemic brain lesion in rats. Brain Res.1287,173–183 (2009).
    • 224  Akesson E, Holmberg L, Jonhagen ME et al.: Solid human embryonic spinal cord xenografts in acute and chronic spinal cord cavities: a morphological and functional study. Exp. Neurol.170(2),305–316 (2001).
    • 225  Akesson E, Piao JH, Samuelsson EB et al.: Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres. Physiol. Behav.92(1–2),60–66 (2007).
    • 226  Cummings BJ, Uchida N, Tamaki SJ et al.: Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc. Natl Acad. Sci. USA102(39),14069–14074 (2005).
    • 227  Eaton MJ, Pearse DD, McBroom JS, Berrocal YA: The combination of human neuronal serotonergic cell implants and environmental enrichment after contusive SCI improves motor recovery over each individual strategy. Behav. Brain Res.194(2),236–241 (2008).
    • 228  Emgard M, Holmberg L, Samuelsson EB et al.: Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord. Brain Res.1278,15–26 (2009).
    • 229  Gorrie CA, Hayward I, Cameron N et al.: Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res.1337,8–20 (2010).
    • 230  Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ: Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One4(6),e5871 (2009).▪ Example of the proper use of comprehensive stereological analysis for assessment of transplanted neural stem cells in the CNS.
    • 231  Salazar DL, Uchida N, Hamers FP, Cummings BJ, Anderson AJ: Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-SCID mouse model. PLoS One5(8),e12272 (2010).
    • 232  Sasaki H, Ishikawa M, Tanaka N et al.: Administration of human peripheral blood-derived CD133+ cells accelerates functional recovery in a rat spinal cord injury model. Spine (Phila Pa 1976)34(3),249–254 (2009).
    • 233  Sheth RN, Manzano G, Li X, Levi AD: Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats. J. Neurosurg. Spine8(2),153–162 (2008).
    • 234  Sundberg M, Andersson PH, Akesson E et al.: Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue. Cell Transplant.20(2),177–191 (2011).
    • 235  Takeuchi H, Natsume A, Wakabayashi T et al.: Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci. Lett.426(2),69–74 (2007).
    • 236  Yan J, Xu L, Welsh AM et al.: Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med.4(2),e39 (2007).
    • 237  Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T: Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One3(9),e3145 (2008).
    • 238  Anderson L, Burnstein RM, He X et al.: Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp. Neurol.204(2),512–524 (2007).
    • 239  Armstrong RJ, Watts C, Svendsen CN, Dunnett SB, Rosser AE: Survival, neuronal differentiation, and fiber outgrowth of propagated human neural precursor grafts in an animal model of Huntington’s disease. Cell Transplant.9(1),55–64 (2000).
    • 240  Behrstock S, Ebert A, McHugh J et al.: Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther.13(5),379–388 (2006).
    • 241  Brederlau A, Correia AS, Anisimov SV et al.: Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells24(6),1433–1440 (2006).
    • 242  Garbuzova-Davis S, Willing AE, Zigova T et al.: Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res.12(3),255–270 (2003).
    • 243  Kerr DA, Llado J, Shamblott MJ et al.: Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J. Neurosci.23(12),5131–5140 (2003).
    • 244  Klein SM, Behrstock S, McHugh J et al.: GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum. Gene Ther.16(4),509–521 (2005).
    • 245  McBride JL, Behrstock SP, Chen EY et al.: Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J. Comp. Neurol.475(2),211–219 (2004).
    • 246  Mukhida K, Mendez I, McLeod M et al.: Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain. Stem Cells25(11),2874–2885 (2007).
    • 247  Ostenfeld T, Caldwell MA, Prowse KR, Linskens MH, Jauniaux E, Svendsen CN: Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp. Neurol.164(1),215–226 (2000).
    • 248  Park CH, Minn YK, Lee JY et al.: In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem.92(5),1265–1276 (2005).
    • 249  Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA: Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med.12(11),1259–1268 (2006).
    • 250  Sanchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RD: In vitro generation and transplantation of precursor-derived human dopamine neurons. J. Neurosci. Res.65(4),284–288 (2001).
    • 251  Suzuki M, McHugh J, Tork C et al.: GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One2(1),e689 (2007).
    • 252  Svendsen CN, Clarke DJ, Rosser AE, Dunnett SB: Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult CNS. Exp. Neurol.137(2),376–388 (1996).
    • 253  Xu L, Yan J, Chen D et al.: Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation82(7),865–875 (2006).
    • 254  Xu L, Ryugo DK, Pongstaporn T, Johe K, Koliatsos VE: Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J. Comp. Neurol.514(4),297–309 (2009).
    • 255  Yan J, Xu L, Welsh AM et al.: Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells24(8),1976–1985 (2006).▪ Important study demonstrating that human neural stem cells are rejected from the CNS using conventional immunosuppressant monotherapies.
    • 256  Yasuhara T, Matsukawa N, Hara K et al.: Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J. Neurosci.26(48),12497–12511 (2006).
    • 257  Zeng X, Cai J, Chen J et al.: Dopaminergic differentiation of human embryonic stem cells. Stem Cells22(6),925–940 (2004).
    • 258  Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL: Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc. Natl Acad. Sci. USA105(43),16707–16712 (2008).
    • 259  Hwang DH, Lee HJ, Park IH et al.: Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther.16(10),1234–1244 (2009).
    • 260  Kim SU, Park IH, Kim TH et al.: Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology26(2),129–140 (2006).
    • 261  Lee ST, Chu K, Park JE et al.: Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci. Res.52(3),243–249 (2005).
    • 262  Liker MA, Petzinger GM, Nixon K, McNeill T, Jakowec MW: Human neural stem cell transplantation in the MPTP-lesioned mouse. Brain Res.971(2),168–177 (2003).
    • 263  Ryu JK, Kim J, Cho SJ et al.: Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol. Dis.16(1),68–77 (2004).
    • 264  Windrem MS, Nunes MC, Rashbaum WK et al.: Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat. Med.10(1),93–97 (2004).
    • 265  Hurelbrink CB, Armstrong RJ, Dunnett SB, Rosser AE, Barker RA: Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. Eur. J. Neurosci.15(7),1255–1266 (2002).
    • 266  Kim SK, Cargioli TG, Machluf M et al.: PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin. Cancer Res.11(16),5965–5970 (2005).
    • 267  Kim SK, Kim SU, Park IH et al.: Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin. Cancer Res.12(18),5550–5556 (2006).
    • 268  Shimato S, Natsume A, Takeuchi H et al.: Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Ther.14(15),1132–1142 (2007).