We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Prospects of stem cell therapy in osteoarthritis

    Sally Roberts

    † Author for correspondence

    Spinal Studies, Robert Jones & Agnes Hunt Orthopedic Hospital & ISTM, Keele University, Oswestry, Shropshire, SY10 7AG, UK.

    ,
    Paul Genever

    Arthritis Research UK Tissue Engineering Centre, UK

    Department of Biology, University of York, York, YO10 5DD, UK

    ,
    Andrew McCaskie

    Arthritis Research UK Tissue Engineering Centre, UK

    Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University & Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 7RU, UK

    &
    Cosimo De Bari

    Arthritis Research UK Tissue Engineering Centre, UK

    Musculoskeletal Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK

    Published Online:https://doi.org/10.2217/rme.11.21

    Osteoarthritis is a common disorder in which there is not only extensive degeneration but also an aberrant attempt at repair in joints. Stem cell therapy could provide a permanent, biological solution, with all sources of stem cells (embryonic, fetal and adult) showing some degree of potential. Mesenchymal stromal/stem cells, however, appear to be the leading candidates because of their ability to be sourced from many or all joint tissues. They may also modulate the immune response of individuals, in a manner influenced by local factors. This biological behavior of stem cells renders the application of regulatory standardizations challenging in comparison to pharmaceutical therapies. However, this would not be an issue if endogenous stem cells were activated to effect repair of an arthritic joint.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Schroeppel JP, Crist JD, Anderson HC, Wang J: Molecular regulation of articular chondrocyte function and its significance in osteoarthritis. Histol. Histopathol.26(3),377–394 (2011).
    • Sun HB: Mechanical loading, cartilage degradation, and arthritis. Ann. NY Acad. Sci.1211,37–50 (2010).
    • Goldring SR, Goldring MB: Bone and cartilage in osteoarthritis: is what’s best for one good or bad for the other? Arthritis Res. Ther.12,143 (2011).
    • Evangelou E, Valdes AM, Kerkhof HJ, Styrkarsdottir U, Zhu Y, Meulenbelt I: Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann. Rheum. Dis.70,349–355 (2011).
    • Malchau H, Herberts P, Garellick G, Soderman P, Eisler T: Prognosis of total hip replacement: update of results and risk-ratio analysis for revision and re-revision from the Swedish National Hip Arthoplasty Register 1979–2000. Scientific Exhibition. Presented at: 69th Annual Meeting of the American Academy of Orthopaedic Surgeons. Dallas, TX, USA, 11–15 June 2002.
    • Chen FH, Tuan RS: Mesenchymal stem cells in arthritic diseases. Arthritis Res. Ther.10(5),223 (2008).
    • Johnson MH, McConnell JM: Lineage allocation and cell polarity during mouse embryogenesis. Sem. Cell Dev. Biol.15(5),583–597 (2004).
    • Evans MJ , Kaufman MH: Establishment in culture of pluripotent cells from mouse embryos. Nature292(5819),154–156 (1981).
    • Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78(12),7634–7638 (1981).
    • 10  Bongso A, Fong CY, Ng SC, Ratnam S: Isolation and culture of inner cell mass cells from human blastocytes. Hum. Reprod.9(11),2110–2117 (1994).
    • 11  Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocytes. Science282(5391),1145–1147 (1998).
    • 12  Nichols J, Zevnik B, Anastassiadis K et al.: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95(3),379–391 (1998).
    • 13  Chambers I, Colby D, Robertson M et al.: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113(5),643–655 (2003).
    • 14  Rodda DJ, Chew JL, Lim LH et al.: Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem.280(26),24731–24737 (2005).
    • 15  Johansson H, Simonsson S: Core transcription factors, Oct4 Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination. Aging2(11),1–8 (2010).
    • 16  Boyer LA, Plath K, Zeitlinger J et al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441(7091),349–353 (2006).
    • 17  Lee JH, Hart SR, Skalnik DG: Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis38(1),32–38 (2004).
    • 18  Meshorer E, Misteli T: Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol.7(7),540–546 (2006).
    • 19  Efroni S, Duttagupta R, Cheng J et al.: Global transcription in pluripotent embryonic stem cells. Cell Stem Cell2(5),437–447 (2008).
    • 20  Houbaviy HB, Murray MF, Sharp PA: Embryonic stem cell-specific microRNAs. Dev. Cell5(2),351–358 (2003).
    • 21  Kanellopoulou C, Muljo SA, Kung AL et al.: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19(4),489–501 (2010).
    • 22  Kim NW, Piatyszek MA, Prowse KR et al.: Specific association of human telomerase activity with immortal cells and cancer. Science266(5193),2011–2015 (1994).
    • 23  Miura T, Mattson MP, Roa MS: Cellular lifespan and senescence signaling in embryonic stem cells. Aging Cell3(6),333–343 (2010).
    • 24  Zhong XY, Zhang B, Asadollahi R, Low SH, Holzgreve W: Umbilical blood stem cells: what to expect. Ann. NY Acad. Sci.1205,17–22 (2010).
    • 25  Gluckman E, Broxmeyer HA, Auerbach AD et al.: Hematopoietic reconstruction in a patient with Fanconi’s anemia by means of umilical-cord blood from an HLA-identical sibling. N. Engl. J. Med.321(17),1174–1178 (1989).
    • 26  Quintin A, Schizas C, Scaletta C et al.: Isolation and in vitro chondrogenic potential of human fetal spine cells. J. Cell. Mol. Med.13,2559–2569 (2009).
    • 27  O’Donoghue K, Fisk NM: Fetal stem cells. Best Pract. Res. Clin. Obstet. Gynaecol.18(6),853–875 (2004).
    • 28  Gucciardo L, Lories R, Ochsenbein-Kolble N, Done E, Zwijsen A, Deprest J: Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. Br. J. Obstet. Gynaecol.116(2),166–172 (2009).
    • 29  Pappa KL, Anganou NP: Novel sources of fetal stem cells: where do they fit on the deveopmental continuum? Regen. Med.4(3),423–433 (2009).
    • 30  Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG: Isolation and characterization of mesenchymal stem cells from the sub-amniotic human ubilical lining membrane. Stem Cells Dev.19(4),491–502 (2010).
    • 31  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).▪▪ Landmark paper that demonstrated for the first time that adult cells could be reprogrammed to a pluripotent embryonic stem cell-like state by introducing as few as four key transcription factors.
    • 32  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • 33  Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151),318–324 (2007).
    • 34  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • 35  Kim K, Doi A, Wen B: Epigenetic memory in induced pluripotent stem cellls. Nature467(7313),285–290 (2010).
    • 36  Pasi CE, Dedreli-Oz A, Negrini Set al.: Genomic instability in induced stem cells. Cell Death Diff.18(5),745–753(2011).
    • 37  Huangfu D, Osafune K, Maehr R et al.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol.26(11),1269–1275 (2008).
    • 38  Woltjen K, Michale IP, Mohseni P et al.: A piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239),766–770 (2009).
    • 39  Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458(7239),771–775 (2009).
    • 40  Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S: Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl Acad. Sci. USA107(32),14152–14157 (2010).
    • 41  Flores I, Blasco MA: The role of telomeres and telomerase in stem cell aging. Fed. Eur. Biochem. Soc. Lett.584(17),3826–3830 (2010).
    • 42  Scadden DT: The stem cell niche as an entity of action. Nature441(7097),1075–1079 (2006).
    • 43  Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Res.3(4),393–403 (1970).▪▪ Colony formation identified as an important indicator of ‘stem cell-ness’.
    • 44  Caplan AI: Mesenchymal stem cells. J. Orthop. Res.9(5),641–650 (1991).
    • 45  Horwitz EM, Le Blanc K, Dominici M et al.: Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy7(5),393–395 (2005).
    • 46  Bianco P, Robey PG, Saggio I, Riminucci M: Mesenchymal stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity and significance in incurable skeletal disease. Hum. Gene Ther.21(9),1057–1066 (2010).
    • 47  da Silva ML, Chagatelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci.119(11),2204–2213 (2006).
    • 48  Pittenger MF, Mackay AM, Beck SC et al.: Multilineage potential of human mesenchymal stem cells. Science284,143–147 (1999).▪ Provides evidence of existence of multipotent mesenchymal stem cells (MSCs) in bone marrow.
    • 49  Dominici M, Le Blanc K, Mueller I et al.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular position statement. Cytotherapy8(4),315–317 (2006).
    • 50  Simmons PJ, Torok-Storb B: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood78(1),55–62 (1991).
    • 51  Jones EA, Kinsey SE, English A et al.: Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum.46(12),3349–3360 (2002).
    • 52  Sacchetti B, Funari A, Michienzi S et al.: Self-renewing osteoprogenitors in bone marrow sinusoids can organise a hematopoietic microenvironment. Cell131(2),324–336 (2007).▪▪ Provides first evidence of self-renewal of bone marrow MSCs via serial transplantation.
    • 53  Barzilay R, Melamed E, Offen D: Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells27(10),2590–2515 (2009).
    • 54  Frith J, Genever P: Transcriptional control of mesenchymal stem cell differentiation. Transf. Med. Hemother.35(3),216–227 (2008).
    • 55  Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.J. Cell. Biochem.64(2),295–312 (1997).
    • 56  de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W: Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol.19,389–394 (2000).
    • 57  Zhou G, Zheng Q, Engin F et al.: Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc. Natl Acad. Sci. USA103(50),19004–19009 (2006).
    • 58  Cheng A, Genever PG: SOX9 determines RUNX transactivity by directing intracellular degradation. J. Miner. Res.25(12),2404–2413 (2010).
    • 59  Si YL, Zhao YL, Hao HJ, Fu XB, Han WD: MSCs: biological characteristics, clinical applications and their outstanding concerns. Ageing Res. Rev.10(1),93–103 (2011).
    • 60  Hoogduijn MJ, Popp F, Verbeek R et al.: The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int. Immunopharmacol.10(12),1496–1500 (2010).
    • 61  Liu Y, Mu R, Wang S et al.: Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res. Ther.12(6),R210 (2010).
    • 62  Di Nicola M, Carlo-Stella C, Magni M et al.: Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood99,3838–3843 (2002).
    • 63  Popp FC, Eggenhofer E, Renner P et al.: Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transplant Immunol.20,55–60 (2008).
    • 64  Bartholomew A, Sturgeon C, Siatskas M et al.: Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Haematol.30,42–48 (2002).
    • 65  Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood105,1815–1822 (2005).
    • 66  Yao C, Sakata D, Esaki Y et al.: Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat. Med.15,633–640 (2009).
    • 67  Yanez R, Oviedo A, Aldea M, Bueren JA, Lamana ML: Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp. Cell Res.316,3109–3123 (2010).
    • 68  Sbano P, Cuccia A, Mazzanti B et al.: Use of donor bone marrow mesenchymal stem cells for treatment of skin allograft rejection in a preclinical rat model. Arch. Dermatol. Res.300(3),115–124 (2008).
    • 69  Mias C, Lairez O, Trouche E et al.: Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricle fibrosis after myocardial infarction. Stem Cells27(11),2734–2743 (2009).
    • 70  Yagi H, Soto-Guitierrez A, Parekkadan B et al.: Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant.19(6),667–679 (2010).
    • 71  Chamberlain G, Fox J, Ashton B, Middleton J: Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells25,2739–2749 (2007).
    • 72  Ding C, Cicuttini F, Cooley H, Boon C, Jones G: Natural history of knee cartilage defects and factors affecting change. Arch. Int. Med.166(6),651–658 (2006).
    • 73  Messner K, Maletius W: The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14 year clinical and radiographic follow-up in 28 young athletes. Acta Orthop. Scand.67(2),165–168 (1996).
    • 74  Shelbourne KD, Jari S, Gray T: Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study. J. Bone Joint Surg. Am.85A(Suppl. 2),8–16 (2003).
    • 75  Shapiro F, Koide S, Glimcher MJ: Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J. Bone Joint Surg. Am.75A(4),532–553 (1993).
    • 76  Eltawil NM, De Bari C, Achan P,Pitzalis C, Dell’Accio F: A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthritis Cart.17(6),695–704 (2009).
    • 77  Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ: Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet7(376),440–448 (2010).
    • 78  Jones EA, English A, Henshaw K et al.: Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal stem cells in inflammatory and degenerative arthritis. Arthritis Rheum.50(3),315–317 (2004).
    • 79  De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum.44(8),1928–1942 (2001).
    • 80  De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten F: Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J. Cell Biol.160(6),909–918 (2003).
    • 81  De Bari C, Dell’Accio F, Luyten F:Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum.44(1),85–95 (2001).
    • 82  De Bari C, Dell’Accio F, Vanlauwe J et al.: Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum.54(4),1209–1221 (2006).
    • 83  Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan A: In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp. Cell Res.195,492–503 (1991).
    • 84  Sakai D: Biological treatment: future beyond cell transplantation. Proc. World Forum Spine Res. (2010) (Epub ahead of print).
    • 85  Zuk PA, Zhu M, Ashjian P et al.:Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13,4279–4295 (2002).
    • 86  Dowthwaite GP, Bishop JC, Redman SN et al.: The surface of articular cartilage contains a progenitor cell population. J. Cell Sci.117,889–897 (2004).
    • 87  Williams R, Khan IM, Richardson K et al.: Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One5(10),1–14 (2010).
    • 88  Shi S , Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res.18(4),696–704 (2003).
    • 89  De Bari C, Pringle S, Pitzalis C, Dell’Accio F: The stem cell niche: a new target in medicine. Curr. Opin. Orthop.17(5),398–404 (2006).
    • 90  da Silva ML, Caplan AI, Nardi NB: In search of the in vivo identity of mesenchymal stem cells. Stem Cells26(9),2287–2299 (2008).
    • 91  Khan IM, Bishop JC, Gilbert S, Archer CW: Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthritis Cart.17,518–528 (2009).
    • 92  Koelling S, Krugel J, Irmer M et al.: Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell4(4),324–335 (2009).
    • 93  Koelling S, Miosge N: Sex differences of chondrogenic progenitor cells in late stages of osteoarthritis. Arthritis Rheum.62(4),1077–1087 (2010).
    • 94  English A, Jones EA, Corscadden D et al.: A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis. Rheumatology46,1676–1683 (2007).
    • 95  Yarak S, Okamoto OK: Human adipose-derived stem cells: current challenges and clinical perspectives. An. Bras. Dermatol.85(5),647–656 (2010).
    • 96  Kurth TB, Dell’Accio F, Crouch V, Augello A, Sharpe PT, De Bari C: Functional mesenchymal stem cell niches in the adult knee joint synovium in vivo.Arthritis Rheum. (2010) (Epub ahead of print).▪ Provides first evidence of existence of endogenous MSCs in the adult synovium in vivo.
    • 97  Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med.331(6),889–895 (1994).
    • 98  Meisel HJ, Siodla V, Ganey T, Minkus Y, Hutton WC, Alasevic O: Clinical experience in cell-based therapeutics: disc chondrocyte transplantation – a treatment for degenerated or damaged intervertebral disc. Biomol. Eng.24,5–21 (2006).
    • 99  Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB: Successful treatment of refactory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J. Bone Joint Surg. Br.89,1382–1386 (2007).
    • 100  Centeno CJ, Schultz JR, Cheever M, Robinson B, Freeman M, Marasco W: Safety and compliations reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr. Stem Cell Res. Ther.5,81–93 (2010).
    • 101  Bhosale A, Kuiper JH, Johnson WEB, Harrison P, Richardson JB: Midterm to long-term longitudinal outcome of autologous chondrocyte implantation in the knee joint – a multilevel analysis. Am. J. Sports Med.20(10),1–8 (2009).
    • 102  Hollander AP, Dickinson SC, Sims TJ, Soranzo C, Pavesio A: Quantitative analysis of repair tissue biopsies following chondrocyte implantation. Tissue Eng. Cart. Bone249,218–233 (2003).
    • 103  Haddo O, Mahroof S, Higgs D et al.: The use of chondrogide membrane in autologous chondrocyte implantation. Knee11,51–55 (2004).
    • 104  Zheng M-H, Willers C, Kirilak L et al.: Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng.13(4),737–746 (2007).
    • 105  Kreuz PC, Muller S, Ossendorf C, Kaps C, Erggelet C: Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res. Ther.11(2),R33 (2009).
    • 106  Warnke PH, Springer ING, Wiltfang J et al.: Growth and transplantation of a custom vascularised bone graft in a man. Lancet364,766–769 (2005).
    • 107  Macchiarini M, Jungebluth P, Go T et al.: Clinical transplantation of a tissue-engineered airway. Lancet372(9655),2023–2030 (2008).
    • 108  De Bari C, Pitzalis C, Dell’Accio F: Reparative medicine: from tissue engineering to joint surface regeneration. Regen. Med.1(1),59–69 (2006).
    • 109  Dell’Accio F, De Bari C, Luyten FP: Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum.44(7),1608–2619 (2001).▪▪ Proposes an in vivo potency assay for chondrocyte preparations to be used for autologous chondrocyte implantation and links its outcome to molecular markers.
    • 110  Roberts S, Hollander AP, Caterson B, Menage J, Richardson JB: Matrix turnover in human cartilage repair tissue in autologous chondrocyte implantation. Arthritis Rheum.44,2586–2598 (2001).
    • 111  Saris DBF, Vanlauwe J, Victor J et al.: Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med.36(2),235–246 (2008).
    • 112  Saris DB, Vanlauwe J, Victor J et al.: Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared with microfracture. Am. J. Sports Med.37(Suppl. 1),10S–19S (2009).
    • 113  Tyndall A, Walker UA, Cope A et al.: Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res. Ther.9(1),301 (2007).
    • 114  Wakitani S, Imoto K, Yamamoto T,Saito M, Murata N, Yoneda M: Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cart.10,199–206 (2002).
    • 115  De Bari C, Dell’Accio F, Luyten F:Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum.50(1),142–150 (2004).
    • 116  Scotti C, Tonnarelli B, Papadimitropoulos A et al.: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl Acad. Sci. USA107(16),7251–7256 (2010).▪ Provides evidence that bone marrow MSCs can recapitulate endochondral ossification morphologically and molecularly.
    • 117  Pelttari K, Winter A, Steck E et al.: Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum.54(10),3254–3266 (2006).
    • 118  De Bari C, Dell’Accio F, Karystinou A et al.: A biomarker-based mathematical model to predict bone-formation potency of human synovial and periostoeal mesenchymal stem cells. Arthritis Rheum.58(1),240–250 (2008).
    • 119  Sakaguchi Y, Sekiya I, Yagishita K, Muneta T: Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum.52(8),2521–2529 (2005).
    • 120  Karystinou A, Dell’Accio F, Kurth TB et al.: Distinict mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology48(9),1057–1064 (2009).
    • 121  Fickert S, Fiedler J, Brenner RE: Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining cell surface markers. Arthritis Res. Ther.6(5),R422–R432 (2004).
    • 122  Trommelmans L, Selling J, Dierickx K: A critical assessment of the directive on tissue engineering of the European Union. Tissue Eng.13(4),667–672 (2007).
    • 123  Michaux G, Van Passel D: Advancedtherapy medicinal products – the rules are harmonised in Europe. Reg. Affairs J. Pharma18(8),1–10 (2007).
    • 124  Kent J, Pfeffer N: Regulating the collection and use of fetal stem cells. Br. Med. J.332(7546),866–867 (2006).
    • 125  Barker M: Stem cells: fast and furious. Nature458(7241),962–965 (2009).
    • 126  Evangelou E, Loughlin J, Spector TD: Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteosrthritis on chromosome 7q22. Ann. Rheum. Dis.70(2),349–355 (2011).
    • 127  Meulenbelt I, Bos SD, Chapman K et al.: Meta-analysis of genes modulating intracellular T3 bio-availability reveal a possible role for the DIO3 gene in osteoarthritis susceptibility. Br. Med. J.70(1),164–167 (2011).
    • 128  Sambrook PN, MacGregor AJ, Spector TD: Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum.42(2),366–372 (1999).
    • 129  Videman T, Battié MC, Ripatti S, Gill K, Manninen H, Kaprio J: Determinants of the progression in lumbar degeneration: a 5 year follow-up study of adult male monozygotic twins. Spine31(6),671–678 (2006).
    • 130  Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WEB: Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone45,726–735 (2010).
    • 131  Stenderup K, Justesen J, Clauusen C,Kassem M: Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone33,919–926 (2003).
    • 132  Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F: Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum.46(3),704–713 (2002).
    • 133  Røsland GV, Svendsen A, Torsvik A et al.: Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res.69(13),5331–5339 (2009).
    • 134  Torsvik A, Røsland GV, Svendsen A et al.: Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track – letter. Cancer Res.70(15),6393–6396 (2010).
    • 135  Prockop DJ, Brenner H, Fibbe WE et al.: Defining the risks of mesenchymal stromal cell therapy. Cytotherapy12(5),576–578 (2010).
    • 136  Tarte K, Gaillard J, Lataillade JJ et al.: Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood115(8),1549–1553 (2010).
    • 137  Rubio D, Garcia-Castro J, Martin MC et al.: Spontaneous human stem cell transformation. Cancer Res.68(8),3035–3039 (2005).
    • 138  Wright K, El Masri W, Osman A, Chowdury J, Johnson WEB: Bone marrow cell therapy for SCI. Stem Cell Rev. (2010) (Epub ahead of print).
    • 139  Kishk NA, Gabr H, Hamdy S et al.: Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil. Neural Repair24(8),702–708 (2010).
    • 140  Delorme B, Ringe J, Pontikoglou C et al.: Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells27,1142–1151 (2009).
    • 141  Oldershaw RA, Baxter MA, Lowe ET et al.: Directed differentiation of human embryonic stem cells towards chondrocytes. Nat. Biotechnol.28(11),1187–1196 (2010).
    • 142  Barker M: Testing times for stem cells. Nature463(7282),719–719 (2010).
    • 143  Caplan AI: Mesenchymal stem cells: the past, the present, the future. Cartilage1(1),6–9 (2010).
    • 144  Caplan AI, Bruder SP: Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med.7(6),259–264 (2001).
    • 201  Arthritis Care: OA Nation: the most comprehensive UK report of people with osteoarthritis www.arthritiscare.org.uk/@3235/Forhealthprofessionals/OANation
    • 202  The National Collaborating Centre for Chronic Conditions: Osteoarthritis. National clinical guideline for care and management in adults www.nice.org.uk/nicemedia/pdf/CG59NICEguideline.pdf
    • 203  European Medicines Agency CAT: Reflection paper on stem cell-based medicinal products www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/03/WC500079932.pdf