We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Self-renewal and scalability of human embryonic stem cells for human therapy

    Xuemei Fu

    Chengdu Women’s & Children’s Central Hospital, Chengdu, Sichuan, China

    Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA

    &
    Published Online:https://doi.org/10.2217/rme.11.18

    Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various cell types, hESCs hold great promise for human cell replacement therapy. While significant progress has been made in establishing the culture conditions for the long-term self-renewal of hESCs, several challenges remain to be overcome for the clinical application of hESCs. One such challenge is to develop strategies to scale-up the production of clinic-grade hESCs in xeno-free and chemically defined medium without inducing genomic instability. To achieve this goal, it is critical to elucidate the molecular pathways required to maintain the self-renewal, survival and genomic stability of hESCs. This article describes recent progress in addressing this challenge and discusses the strategies to improve the scalability of the production of hESCs by inhibiting their apoptosis.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282,1145–1147 (1998).▪▪ Important paper that describes the first successful derivation of human embryonic stem cells (hESCs) from human blastocysts.
    • Chambers I, Smith A: Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene23(43),7150–7160 (2004).
    • Humphrey RK, Beattie GM, Lopez AD et al.: Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells22(4),522–530 (2004).
    • Chadwick K, Wang LS, Li L et al.: Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood102(3),906–915 (2003).
    • Zhang PB, Li JA, Tan ZJ et al.: Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood111(4),1933–1941 (2008).
    • Nichols J, Smith A: The origin and identity of embryonic stem cells. Development138(1),3–8 (2010).
    • Eiselleova L, Matulka K, Kriz V et al.: A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells27(8),1847–1857 (2009).
    • Besser D: Expression of nodal, lefty-A, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem.279(43),45076–45084 (2004).
    • Vallier L, Alexander M, Pedersen RA: Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci.118(19),4495–4509 (2005).
    • 10  Lee KW, Yook JY, Son MY et al.: Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev.19(4),557–568 (2010).
    • 11  Jiaxi ZX, Su P, Wang L et al.: mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc. Natl Acad. Sci. USA106(19),7840–7845 (2009).
    • 12  Easley CA, Ben-Yehudah A, Redinger CJ et al.: mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cell. Reprogram.12(3),263–273 (2010).
    • 13  Valdimarsdottir G, Mummery C: Functions of the TGF-β superfamily in human embryonic stem cells. APMIS113(11–12),773–789 (2005).
    • 14  Na J, Andrews P: The balancing action between Activin A/TGF-β, FGF, Writ and BMP signalling instructs human embryonic stem cell fate decisions. Mech. Dev.126,S207 (2009).
    • 15  Chambers I, Colby D, Robertson M et al.: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113(5),643–655 (2003).▪▪ Describes the cloning of the critical pluripotency factor Nanog.
    • 16  Mitsui K, Tokuzawa Y, Itoh H et al.: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113(5),631–642. (2003).▪▪ Describes the cloning of the critical pluripotency factor Nanog.
    • 17  Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ: High-efficiency RNA interference in human embryonic stem cells. Stem Cells23(3),299–305 (2005).
    • 18  Boyer LA, Lee TI, Cole MF et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122(6),947–956. (2005).
    • 19  Nichols J, Zevnik B, Anastassiadis K et al.: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95(3),379–391 (1998).
    • 20  Kuroda T, Tada M, Kubota H et al.: Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol.25(6),2475–2485 (2005).
    • 21  Adachi K, Suemori H, Yasuda S, Nakatsuji N, Kawase E: Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells15(5),455–469 (2010).
    • 22  Boiani M, Scholer HR: Regulatory networks in embryo-derived pluripotent stem cells. Nat. Rev. Mol. Cell Biol.6(11),872–884 (2005).
    • 23  Zhang PL, Andrianakos R, Yang Y, Liu CM, Lu WG: Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J. Biol. Chem.285(12),9180–9189 (2010).
    • 24  Chan KK, Zhang J, Chia NY et al.: KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells27(9),2114–2125 (2009).
    • 25  Lim Cy, Tam Wl, Zhang J et al.: Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell3(5),543–554 (2008).
    • 26  Wang ZX, Teh CHL, Chan CMY et al.: The Transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells26(11),2791–2799 (2008).
    • 27  Chen X, Fang F, Liou YC, Ng HH: Zfp143 regulates Nanog through modulation of Oct4 binding. Stem Cells26(11),2759–2767 (2008).
    • 28  Xu RH, Sampsell-Barron TL, Gu F et al.: NANOG is a direct target of TGF β/Activin-mediated SMAD signaling in human ESCs. Cell Stem Cell3(2),196–206 (2008).
    • 29  Liang J, Wan M, Zhang Y et al.: Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat. Cell Biol.10(6),731–739 (2008).
    • 30  Mallanna SK, Rizzino A: Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev. Biol.344(1),16–25 (2010).
    • 31  Fujita J, Crane AM, Souza MK et al.: Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell2(6),595–601 (2008).
    • 32  Moretto-Zita M, Jin H, Shen ZX, Zhao TB, Briggs SP, Xu Y: Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc. Natl Acad. Sci. USA107(30),13312–13317 (2010).
    • 33  Tsuruzoe S, Ishihara K, Uchimura Y et al.: Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem. Biophys. Res. Commun.351(4),920–926 (2006).
    • 34  Ohgushi M, Matsumura M, Eiraku M et al.: Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell7(2),225–239 (2010).
    • 35  Watanabe K, Ueno M, Kamiya D et al.: A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol.25(6),681–686 (2007).▪ Among the first approaches to effectively promote clonal expansion of hESCs.
    • 36  Emre N, Vidal JG, Elia J et al.: The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers. PLoS One5(8),e12148 (2010).
    • 37  Baharvand H, Salekdeh GH, Taei A, Mollamohammadi S: An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat. Protoc.5(3),588–594 (2010).
    • 38  Song H, Chung S-K, Xu Y: Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell6(1),80–89 (2010).▪ Describes the generation of the first homozygous mutant hESCs and the critical role of p53 in maintaining genomic stability in hESCs.
    • 39  Ferretti R, Palumbo V, Di Savino A et al.: Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev. Cell18(3),486–495 (2010).
    • 40  Baxter MA, Camarasa MV, Bates N et al.: Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res.3(1),28–38 (2009).
    • 41  Xu Y, Zhu XW, Hahm HS et al.: Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc. Natl Acad. Sci. USA107(18),8129–8134 (2010).
    • 42  Li D, Zhou JX, Wang L et al.: Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J. Cell Biol.191(3),631–644 (2010).
    • 43  Li L, Wang SA, Jezierski A et al.: A Unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells28(2),247–257 (2010).
    • 44  Miura T, Mattson MP, Rao MS: Cellular lifespan and senescence signaling in embryonic stem cells. Aging Cell3(6),333–343 (2004).
    • 45  Kim SJ, Cheon SH, Yoo SJ et al.: Contribution of the PI3K/Akt/PKB signal pathway to maintenance of self-renewal in human embryonic stem cells. FEBS Lett.579(2),534–540 (2005).
    • 46  Bendall SC, Stewart MH, Menendez P et al.: IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature448(7157),1015–1021 (2007).
    • 47  Mattson MP, Meffert MK: Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ.13(5),852–860 (2006).
    • 48  Kang HB, Kim YE, Kwon HJ, Sok DE, Lee YH: Enhancement of NF-κB expression and activity upon differentiation of human embryonic stem cell line SNUhES3. Stem Cells Dev.16(4),615–623 (2007).
    • 49  Yang CB, Atkinson SP, Vilella F et al.: Opposing putative roles for canonical and noncanonical NF-κB signaling on the survival, proliferation, and differentiation potential of human embryonic stem cells. Stem Cells28(11),1970–1980 (2010).
    • 50  Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ: Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc. Natl Acad. Sci. USA99(6),3586–3590 (2002).
    • 51  Narva E, Autio R, Rahkonen N et al.: High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol.28(4),371–377 (2010).▪ Among the first papers to describe the genomic instability in hESCs using high-resolution genomic analysis.
    • 52  Laurent LC, Ulitsky I, Slavin I et al.: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell8(1),106–118 (2011).▪ One of the first articles to describe genomic instability in hESCs and induced pluripotent stem cells using high-resolution genomic analysis.
    • 53  Momcilovic O, Choi S, Varum S, Bakkenist C, Schatten G, Navara C: Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells27(8),1822–1835 (2009).
    • 54  Vousden KH, Prives C: Blinded by the light: the growing complexity of p53. Cell137(3),413–431 (2009).
    • 55  Lin T, Chao C, Saito SI et al.: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol.7(2),165–171 (2005).▪▪ Describes an important role of p53 in maintaining genomic stability in ESCs.
    • 56  Liu DP, Ou LD, Clemenson GD et al.: Puma is required for p53-induced depletion of adult stem cells. Nat. Cell Biol.12(10),993–998 (2010).
    • 57  Martin MJ, Muotri A, Gage F, Varki A: Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med.11(2),228–232 (2005).
    • 58  Crook JM, Peura TT, Kravets L et al.: The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell1(5),490–494 (2007).
    • 59  Sivarajah S, Raj GS, Mathews AJV, Sahib NBE, Hwang WS, Crook JM: The generation of GLP-grade human embryonic stem cell banks from four clinical-grade cell lines for preclinical research. In Vitro Cell. Dev. Biol. Anim.46(3–4),210–216 (2010).
    • 60  Englund MCO, Caisander G, Noaksson K et al.: The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking. In Vitro Cell. Dev. Biol. Anim.46(3–4),217–230 (2010).
    • 61  Meng GL, Liu SY, Li XY, Krawetz R, Rancourt DE: Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev.19(4),547–556 (2010).
    • 62  Aguilar-Gallardo C, Poo M, Gomez E et al.: Derivation, characterization, differentiation, and registration of seven human embryonic stem cell lines (VAL-3, -4, -5, -6M, -7, -8, and -9) on human feeder. In Vitro Cell. Dev. Biol. Anim.46(3–4),317–326 (2010).
    • 63  Tecirlioglu RT, Nguyen L, Koh K, Trounson AO, Michalska AE: Derivation and maintenance of human embryonic stem cell line on human adult skin fibroblast feeder cells in serum replacement medium. In Vitro Cell. Dev. Biol. Anim.46(3–4),231–235 (2010).
    • 64  Park Y, Choi IY, Lee SJ et al.: Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev.19(11),1713–1722 (2010).
    • 65  Rodin S, Domogatskaya A, Strom S et al.: Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotechnol.28(6),611–615 (2010).
    • 66  Prowse ABJ, Doran MR, Cooper-White JJ et al.: Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials31(32),8281–8288 (2010).
    • 67  Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA: Feeder-independent culture of human embryonic stem cells. Nat. Meth.3(8),637–646 (2006).
    • 68  Wang L, Schulz TC, Sherrer ES et al.: Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood110(12),4111–4119 (2007).
    • 69  Yao S, Chen S, Clark J et al.: Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. USA103(18),6907–6912 (2006).
    • 70  Melkoumian Z, Weber JL, Weber DM et al.: Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol.28(6),606–695 (2010).▪ One of the first articles to develop a bioactive surface for long-term expansion of hESCs.
    • 71  Yoon BS, Jun EK, Park G et al.: Optimal suppression of protein phosphatase 2A activity is critical for maintenance of human embryonic stem cell self-renewal. Stem Cells28(5),874–884 (2010).
    • 72  Wu DM, Pang YH, Ke YH et al.: A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by Shp2 tyrosine phosphatase. PLoS One4(3),e4914 (2009).
    • 73  Villa-Diaz LG, Nandivada H, Ding J et al.: Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol.28(6),581–583 (2010).▪ One of the first studies to develop a bioactive surface to support the long-term culture of hESCs.
    • 74  Mohamet L, Lea ML, Ward CM: Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One5(9),e12921 (2010).
    • 75  Serra M, Brito C, Sousa MFQ et al.: Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J. Biotechnol.148(4),208–215 (2010).
    • 76  Steiner D, Khaner H, Cohen M et al.: Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat. Biotechnol.28(4),361–364 (2010).▪ The first successful derivation of hESCs in suspension culture.