We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    Limin Wang*

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, MI 48109, USA

    *Both authors contributed equally

    Search for more papers by this author

    ,
    Lindsey Ott*

    Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA

    *Both authors contributed equally

    Search for more papers by this author

    ,
    Kiran Seshareddy

    Department of Anatomy & Physiology, Kansas State University, Manhattan, KS 66506, USA

    ,
    Mark L Weiss

    Department of Anatomy & Physiology, Kansas State University, Manhattan, KS 66506, USA

    &
    Michael S Detamore

    † Author for correspondence

    Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.

    Published Online:https://doi.org/10.2217/rme.10.98

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering.

    Bibliography

    • Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM: Stem cells. Lancet366(9485),592–602 (2005).
    • Brignier AC, Gewirtz AM: Embryonic and adult stem cell therapy. J. Allergy Clin. Immunol.125(2 Suppl. 2),S336–S344 (2010).
    • Kaufman DS, Hanson ET, Lewis RL et al.: Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA98(19),10716–10721 (2001).
    • Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M: Insulin production by human embryonic stem cells. Diabetes50(8),1691–1697 (2001).
    • Green H, Easley K, Iuchi S: Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc. Natl Acad. Sci. USA100(26),15625–15630 (2003).
    • Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv. Cancer Res.100,133–158 (2008).
    • Cai J, Li W, Su H et al.: Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J. Biol. Chem.285(15),11227–11234 (2010).
    • Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature448(7151),313–317 (2007).
    • Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • 10  Maherali N, Sridharan R, Xie W et al.: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1(1),55–70 (2007).
    • 11  Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151),318–324 (2007).
    • 12  Di Nicola M, Carlo-Stella C, Magni M et al.: Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood99(10),3838–3843 (2002).
    • 13  Bartholomew A, Sturgeon C, Siatskas M et al.: Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30(1),42–48 (2002).
    • 14  Kode JA, Mukherjee S, Joglekar MV, Hardikar AA: Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy11(4),377–391 (2009).
    • 15  Quarto R, Mastrogiacomo M, Cancedda R et al.: Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med.344(5),385–386 (2001).
    • 16  Marcacci M, Kon E, Moukhachev V et al.: Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng.13(5),947–955 (2007).
    • 17  Mueller SM, Glowacki J: Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J. Cell Biochem.82(4),583–590 (2001).
    • 18  Lee SY, Miwa M, Sakai Y et al.: In vitro multipotentiality and characterization of human unfractured traumatic hemarthrosis-derived progenitor cells: a potential cell source for tissue repair. J. Cell Physiol.210(3),561–566 (2007).
    • 19  Schaffler A, Buchler C: Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells25(4),818–827 (2007).
    • 20  Gimble JM, Katz AJ, Bunnell BA: Adipose-derived stem cells for regenerative medicine. Circ. Res.100(9),1249–1260 (2007).
    • 21  Zuk PA, Zhu M, Ashjian P et al.: Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13(12),4279–4295 (2002).
    • 22  Nakashima M, Reddi AH: The application of bone morphogenetic proteins to dental tissue engineering. Nat. Biotechnol.21(9),1025–1032 (2003).
    • 23  Sloan AJ, Waddington RJ: Dental pulp stem cells: what, where, how? Int. J. Paediatr. Dent.19(1),61–70 (2009).
    • 24  Gronthos S, Brahim J, Li W et al.: Stem cell properties of human dental pulp stem cells. J. Dent. Res.81(8),531–535 (2002).
    • 25  Tuan RS, Boland G, Tuli R: Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther.5(1),32–45 (2003).
    • 26  Choumerianou DM, Dimitriou H, Kalmanti M: Stem cells: promises versus limitations. Tissue Eng. Part B Rev.14(1),53–60 (2008).
    • 27  Secco M, Zucconi E, Vieira NM et al.: Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscul. Disord.18(1),17–18 (2008).
    • 28  Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Science276(5309),71–74 (1997).
    • 29  Childs R, Chernoff A, Contentin N et al.: Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N. Engl. J. Med.343(11),750–758 (2000).
    • 30  Jones EA, English A, Henshaw K et al.: Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum.50(3),817–827 (2004).
    • 31  Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W: β-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105(4),533–545 (2001).
    • 32  Seale P, Asakura A, Rudnicki MA: The potential of muscle stem cells. Dev. Cell1(3),333–342 (2001).
    • 33  Weiss ML, Medicetty S, Bledsoe AR et al.: Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells24(3),781–792 (2006).
    • 34  Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM: Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology41(3–4),389–399 (2004).
    • 35  Dominici M, Le Blanc K, Mueller I et al.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8(4),315–317 (2006).
    • 36  Karahuseyinoglu S, Cinar O, Kilic E et al.: Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells25(2),319–331 (2007).
    • 37  Troyer DL, Weiss ML: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells26(3),591–599 (2008).
    • 38  Campard D, Lysy PA, Najimi M, Sokal EM: Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology134(3),833–848 (2008).
    • 39  Weiss ML, Troyer DL: Stem cells in the umbilical cord. Stem Cell Rev.2(2),155–162 (2006).
    • 40  Can A, Karahuseyinoglu S: Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells25(11),2886–2895 (2007).
    • 41  Ciavarella S, Dammacco F, De Matteo M, Loverro G, Silvestris F: Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev.18(8),1211–1220 (2009).
    • 42  Cho PS, Messina DJ, Hirsh EL et al.: Immunogenicity of umbilical cord tissue derived cells. Blood111(1),430–438 (2008).
    • 43  Ennis J, Götherström C, Le Blanc K, Davies JE: In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy10(2),174–181 (2008).
    • 44  Sarugaser R, Ennis J, Stanford WL, Davies JE: Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods Mol. Biol.482,269–279 (2009).
    • 45  Hadidian Z, Pirie NW: The preparation and some properties of hyaluronic acid from human umbilical cord. Biochem. J.42(2),260–265 (1948).
    • 46  Bowles HE, McKee RD: Ruptures of the umbilical cord with a case of intrapartum rupture or all three vessels. Calif. Med.70(5),422 (1949).
    • 47  Moretti P, Hatlapatka T, Marten D et al.: Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Adv. Biochem. Eng. Biotechnol.123,29–54 (2009).
    • 48  Mitchell KE, Weiss ML, Mitchell BM et al.: Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells21(1),50–60 (2003).
    • 49  Kadner A, Hoerstrup SP, Tracy J et al.: Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann. Thorac. Surg.74(4),S1422–S1428 (2002).
    • 50  Chao KC, Chao KF, Fu YS, Liu SH: Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control Type 1 diabetes. PLoS ONE3(1),e1451 (2008).
    • 51  Fong CY, Richards M, Manasi N, Biswas A, Bongso A: Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod. Biomed. Online15(6),708–718 (2007).
    • 52  Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y: Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells25(1),98–106 (2007).
    • 53  Lund RD, Wang S, Lu B et al.: Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells25(3),602–611 (2007).
    • 54  Kadner A, Zund G, Maurus C et al.: Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur. J. Cardiothorac. Surg.25(4),635–641 (2004).
    • 55  Sodian R, Lueders C, Kraemer L et al.: Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann. Thorac. Surg.81(6),2207–2216 (2006).
    • 56  Schmidt D, Mol A, Neuenschwander S et al.: Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur. J. Cardiothorac. Surg.27(5),795–800 (2005).
    • 57  Schmidt D, Mol A, Odermatt B et al.: Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng.12(11),3223–3232 (2006).
    • 58  Schmidt D, Asmis LM, Odermatt B et al.: Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann. Thorac. Surg.82(4),1465–1471; discussion 1471 (2006).
    • 59  Wang L, Seshareddy K, Weiss ML, Detamore MS: Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Eng. Part A15(5),1009–1017 (2009).
    • 60  Bailey MM, Wang L, Bode CJ et al.: A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng.13(8),2003–2010 (2007).
    • 61  Diao Y, Ma Q, Cui F, Zhong Y: Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering. J. Biomed. Mater. Res. A91(1),123–131 (2008).
    • 62  Heifetz SA: The umbilical cord: obstetrically important lesions. Clin. Obstet. Gynecol.39(3),571–587 (1996).
    • 63  Hill LM, Kislak S, Runco C: An ultrasonic view of the umbilical cord. Obstet. Gynecol. Surv.42(2),82–88 (1987).
    • 64  Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE: Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells23(2),220–229 (2005).
    • 65  Wang HS, Hung SC, Peng ST et al.: Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells22(7),1330–1337 (2004).
    • 66  Fong CY, Subramanian A, Biswas A et al.: Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton’s jelly stem cells. Reprod. Biomed. Online21(3),391–401 (2010).
    • 67  Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P: Stromal differentiation and architecture of the human umbilical cord. Placenta18(1),53–64 (1997).
    • 68  Kobayashi K, Kubota T, Aso T: Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of α-smooth muscle actin. Early Hum. Dev.51(3),223–233 (1998).
    • 69  Bongso A, Fong CY, Gauthaman K: Taking stem cells to the clinic: major challenges. J. Cell Biochem.105(6),1352–1360 (2008).
    • 70  Majore I, Moretti P, Stahl F, Hass R, Kasper C: Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev. (2010) (Epub ahead of print).
    • 71  Lu LL, Liu YJ, Yang SG et al.: Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica91(8),1017–1026 (2006).
    • 72  Wu KH, Zhou B, Lu SH et al.: In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J. Cell Biochem.100(3),608–616 (2007).
    • 73  Hoerstrup SP, Kadner A, Breymann C et al.: Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann. Thorac. Surg.74(1),46–52; discussion 52 (2002).
    • 74  Eblenkamp M, Aigner J, Hintermair J et al.: [Umbilical cord stromal cells (UCSC). Cells featuring osteogenic differentiation potential]. Orthopade33(12),1338–1345 (2004).
    • 75  Carlin R, Davis D, Weiss M et al.: Expression of early transcription factors Oct4, Sox2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol.4(1),8 (2006).
    • 76  Wu KH, Zhou B, Yu CT et al.: Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. Ann. Thorac. Surg.83(4),1491–1498 (2007).
    • 77  Jo CH, Kim OS, Park EY et al.: Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res.334(3),423–433 (2008).
    • 78  Zhang P, Luo X, Wang H: Clinical transplantation of a tissue-engineered airway. Lancet373(9665),718; author reply 718–719 (2009).
    • 79  Fong CY, Chak LL, Biswas A et al.: Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. (2010) (Epub ahead of print).
    • 80  Liedtke S, Stephan M, Kogler G: Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol. Chem.389(7),845–850 (2008).
    • 81  Méndez-Ferrer S, Michurina TV, Ferraro F et al.: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature466(7308),829–834 (2010).
    • 82  Baksh D, Yao R, Tuan RS: Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells25(6),1384–1392 (2007).
    • 83  Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG: Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev.19(4),491–502 (2010).
    • 84  Anzalone R, Lo Iacono M, Corrao S et al.: New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev.19(4),423–438 (2010).
    • 85  Fan CG, Zhang QJ, Zhou JR: Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev. (2010) (Epub ahead of print).
    • 86  Gao J, Yao JQ, Caplan AI: Stem cells for tissue engineering of articular cartilage. Proc. Inst. Mech. Eng.221(5),441–450 (2007).
    • 87  Darling EM, Athanasiou KA: Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res.23(2),425–432 (2005).
    • 88  Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res.238(1),265–272 (1998).
    • 89  Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng.4(4),415–428 (1998).
    • 90  Im GI, Jung NH, Tae SK: Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng.12(3),527–536 (2006).
    • 91  Spagnoli A, Longobardi L, O’Rear L: Cartilage disorders: potential therapeutic use of mesenchymal stem cells. Endocr. Dev.9,17–30 (2005).
    • 92  Longobardi L, O’Rear L, Aakula S et al.: Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-β signaling. J. Bone Miner. Res.21(4),626–636 (2006).
    • 93  Wang L, Detamore MS: Insulin-like growth factor-I improves chondrogenesis of predifferentiated human umbilical cord mesenchymal stromal cells. J. Orthop. Res.27(8),1109–1115 (2009).
    • 94  Naughton BA: Cells isolated from Wharton’s jelly of the human umbilical cord develop a cartilage phenotype when treated with TGF-β in vitro.FASEB J.11,A19 (Abstr. No. 108) (1997).
    • 95  Barry F, Boynton RE, Liu B, Murphy JM: Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res.268(2),189–200 (2001).
    • 96  Pittenger MF, Mackay AM, Beck SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science284(5411),143–147 (1999).
    • 97  Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS: A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng. Part A15(8),2259–2266 (2009).
    • 98  Motoki DS, Mulliken JB: The healing of bone and cartilage. Clin. Plast. Surg.17(3),527–544 (1990).
    • 99  Habal MB: Bone repair by regeneration. Clin. Plast. Surg.23(1),93–101 (1996).
    • 100  Salgado AJ, Coutinho OP, Reis RL: Bone tissue engineering: state of the art and future trends. Macromol. Biosci.4(8),743–765 (2004).
    • 101  Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM: 5-azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang.95(2),137–148 (2008).
    • 102  Hou T, Xu J, Wu X et al.: Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng. Part A15(9),2325–2334 (2009).
    • 103  Xu HH, Zhao L, Detamore MS, Takagi S, Chow LC: Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tissue Eng. Part A16(9),2743–2753 (2010).
    • 104  Honsawek S, Dhitiseith D, Phupong V: Effects of demineralized bone matrix on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J. Med. Assoc. Thai.89(Suppl. 3),S189–S195 (2006).
    • 105  Zhang ZY, Teoh SH, Chong MS et al.: Superior osteogenic capacity for bone tissue engineering of fetal compared to perinatal and adult mesenchymal stem cells. Stem Cells27(1),126–131 (2009).
    • 106  Wang L, Singh M, Bonewald LF, Detamore MS: Signalling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering. J. Tissue Eng. Regen. Med.3(5),398–404 (2009).
    • 107  Gauthaman K, Venugopal JR, Yee FC et al.: Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Eng. Part A (2010) (Epub ahead of print).
    • 108  Penolazzi L, Tavanti E, Vecchiatini R et al.: Encapsulation of mesenchymal stem cells from Wharton’s jelly in alginate microbeads. Tissue Eng. Part C Methods16(1),141–155 (2010).
    • 109  Zhao L, Weir MD, Xu HH: An injectable calcium phosphate–alginate hydrogel–umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials31(25),6502–6510 (2010).
    • 110  Wang L, Dormer NH, Bonewald LF, Detamore MS: Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng. Part A16(6),1937–1948 (2010).
    • 111  Wang L, Detamore MS: Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. J. Tissue Eng. Regen. Med. (2010) (Epub ahead of print).
    • 112  Dormer NH, Singh M, Wang L, Berkland CJ, Detamore MS: Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann. Biomed. Eng.38(6),2167–2182 (2010).
    • 113  Conconi MT, Burra P, Di Liddo R et al.: CD105+ cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int. J. Mol. Med.18(6),1089–1096 (2006).
    • 114  Kocaefe C, Balci D, Hayta BB, Can A: Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair. Stem Cell Rev.6(4),512–522 (2010).
    • 115  Vieira NM, Zucconi E, Bueno CR Jr et al.: Human multipotent mesenchymal stromal cells from distinct sources show different in vivo potential to differentiate into muscle cells when injected in dystrophic mice. Stem Cell Rev.6(4),560–566 (2010).
    • 116  Patrick CW Jr: Tissue engineering strategies for adipose tissue repair. Anat. Rec.263(4),361–366 (2001).
    • 117  Gomillion CT, Burg KJ: Stem cells and adipose tissue engineering. Biomaterials27(36),6052–6063 (2006).
    • 118  Turner NJ, Jones HS, Davies JE, Canfield AE: Cyclic stretch-induced TGFb1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem. Biophys. Res. Commun.377(4),1147–1151 (2008).
    • 119  Karahuseyinoglu S, Kocaefe C, Balci D, Erdemli E, Can A: Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells26(3),682–691 (2008).
    • 120  Breymann C, Schmidt D, Hoerstrup SP: Umbilical cord cells as a source of cardiovascular tissue engineering. Stem Cell Rev.2(2),87–92 (2006).
    • 121  Schmidt D, Hoerstrup SP: Tissue engineered heart valves based on human cells. Swiss Med. Wkly137(Suppl. 155),80S–85S (2007).
    • 122  Martin JA, Hamilton BE, Sutton PD et al.: Births: final data for 2005. Natl Vital Stat. Rep.56(6),1–103 (2007).
    • 123  Weiss ML, Anderson C, Medicetty S et al.: Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells26(11),2865–2874 (2008).
    • 124  Drukker M: Immunogenicity of human embryonic stem cells: can we achieve tolerance? Springer Semin. Immunopathol.26(1–2),201–213 (2004).
    • 125  Drukker M, Benvenisty N: The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol.22(3),136–141 (2004).
    • 126  Najar M, Raicevic G, Boufker HI et al.: Adipose-tissue-derived and Wharton’s jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Tissue Eng. Part A16(11),3537–3546 (2010).
    • 127  Najar M, Raicevic G, Boufker HI et al.: Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton’s Jelly and bone marrow sources. Cell Immunol.264(2),171–179 (2010).
    • 128  Selmani Z, Naji A, Zidi I et al.: Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells26(1),212–222 (2008).
    • 129  Patel SA, Sherman L, Munoz J, Rameshwar P: Immunological properties of mesenchymal stem cells and clinical implications. Arch. Immunol. Ther. Exp. (Warsz) 56(1),1–8 (2008).
    • 130  Weiss ML, Mitchell KE, Hix JE et al.: Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp. Neurol.182(2),288–299 (2003).
    • 131  Chen X, McClurg A, Zhou GQ, McCaigue M, Armstrong MA, Li G: Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells and the effect is partially due to the upregulated expression of B7 molecules. Stem Cells25(2),364–370 (2007).
    • 132  Mannello F, Tonti GA: Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells25(7),1603–1609 (2007).
    • 133  Galban CJ, Locke BR: Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotechnol. Bioeng.65(2),121–132 (1999).
    • 134  Seshareddy K, Troyer D, Weiss ML: Method to isolate mesenchymal-like cells from Wharton’s Jelly of umbilical cord. Methods Cell Biol.86,101–119 (2008).
    • 135  Kim JW, Kim SY, Park SY et al.: Mesenchymal progenitor cells in the human umbilical cord. Ann. Hematol.83(12),733–738 (2004).