We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Does the regeneration of hippocampal neurons offer hope for the treatment of cognitive deficits?

    Simon C Spanswick

    Department of Psychology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada

    ,
    Hugo Lehmann

    Department of Psychology, Trent University, 1600 West Bank Dr, Peterborough, ON, K9J 7B8, Canada

    &
    Robert J Sutherland

    † Author for correspondence

    Department of Neuroscience, University of Lethbridge, 4401 University Dr, Lethbridge, T1K 3M4AB, Canada.

    Published Online:https://doi.org/10.2217/rme.10.93
    Free first page

    Bibliography

    • Schöller K, Zausinger S, Baethmann A, Schmid-Elsaesser R: Neuroprotection in ischemic stroke – combination drug therapy and mild hypothermia in a rat model of permanent focal cerebral ischemia. Brain Res.1023,272–278 (2004).
    • Hagell P, Piccini P, Björklund A et al.: Dyskinesias following neural transplantation in Parkinson’s disease. Nat. Neurosci.5,627–628 (2002).
    • Jeltsch H, Yee J, Aloy E et al.: Transplantation of neurospheres after granule cell lesions in rats: cognitive improvements despite no long-term immunodetection of grafted cells. Behav. Brain Res.143,177–191 (2003).
    • Lindvall O: Neural transplantation in Parkinson’s disease. Novartis Found. Symp.231,110–123; discussion: 123–128, 145–147 (2000).
    • Will B, Kelche C, Cassel JC: Intracerebral transplants and memory dysfunction: circuitry repair or functional level setting?. Neural Plast.7,93–108 (2000).
    • Lindvall O, Hagell P: Role of cell therapy in Parkinson disease. Neurosurg. Focus13,e2 (2002).
    • Alvarez-Bullya A, Garcia-Verdugo JM: Neurogenesis in adult subventricular zone. J. Neurosci.22,629–634 (2002).
    • Kempermann G, Jessberger S, Steiner B, Kronenberg G: Milestones of neuronal development in the adult hippocampus. Trends Neurosci.27,447–452 (2004).
    • Sutherland RJ, Whishaw IQ, Kolb B: A behavioural analysis of spatial localization following electrolytic, kainite- or colchicine-induced damage to the hippocampal formation in the rat. Behav. Brain Res.7,133–153 (1983).
    • 10  Xavier GF, Oliveira-Filho JB, Santos AMG: Dentate gyrus-selective colchicine lesion and disruption of performance in spatial tasks: difficulties in “place strategy” because of a lack of flexibility in the use of environmental cues. Hippocampus9,668–681 (1999).
    • 11  Leutgeb JK, Leutgeb S, Moser M-B, Moser EI: Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science315,961–966 (2007).
    • 12  Sloviter RS, Valiquette G, Abrams GM et al.: Selective loss of hippocampal granule cells in the mature rats brain after adrenalectomy. Science243,535–538 (1989).
    • 13  Woolley CS, Gould E, Sakai RR, Spencer RL, McEwen BS: Effects of aldosterone or RU 28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Res.554,312–315 (1991).
    • 14  Spanswick SC, Sutherland RJ: Object/context-specific memory deficits associated with loss of hippocampal granule cells after adrenalectomy in rats. Learn. Mem.17,241–245 (2010).
    • 15  Spanswick SC, Epp JR, Keith JR, Sutherland RJ: Adrenalectomy-induced granule cell degeneration in the hippocampus causes spatial memory deficits that are not reversed by chronic treatment with corticosterone or fluoxetine. Hippocampus17,137–146 (2007).
    • 16  Fernando CV, Moses D, Parish CL, Tomas D, Drago J, Horne MK: Creating a ventral midbrain stem cell niche in an animal model for Parkinson’s disease. Stem Cells Dev.19(12),1995–2007 (2010).
    • 17  Shimado IS, Peterson BM, Spees JL: Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke. Stroke41,e552–e560 (2010).
    • 18  Young C, Brooks K, Buchan AM, Szele F: Cellular and molecular determinants of stroke induced changes in subventricular zone cell migration. Antioxid. Redox Signal. doi: 10.1089/ars.2010.3435 (2010) (Epub ahead of print).
    • 19  Mu Y, Lee SW, Gage FH: Signaling in adult neurogenesis. Curr. Opin. Neurobiol.4,416–423 (2010).
    • 20  Gonzalez-Perez O, Quiñones-Hinjosa A, Garcia-Verdugo JM: Immunological control of adult neural stem cells. J. Stem Cells5,23–31 (2010).
    • 21  Molina-Holgado E, Molina-Holgado F: Mending the broken brain: neuroimmune interactions in neurogenesis. J. Neurochem.114,1277–1290 (2010).