We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Tissue engineering approaches for regenerative dentistry

    Kerstin M Galler

    Department of Operative Dentistry & Periodontology, University of Regensburg, Germany

    &
    Rena N D’Souza

    † Author for correspondence

    Department of Biomedical Sciences, Texas A & M Health Science Center Baylor, College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA.

    Published Online:https://doi.org/10.2217/rme.10.86

    Although teeth can withstand enormous abrasive forces, they are susceptible to damage due to trauma, acids and bacterial attack. Conventional treatment relies on synthetic materials to fill defects and replace whole teeth, but these remain substitutes and cannot restore the tissues’ physiological architecture and function. With the isolation of postnatal stem cells from various sources in the oral cavity and the development of smart materials for cell and growth factor delivery, possibilities for alternative, biology-based treatments arise. Interdisciplinary approaches are needed to move from replacement to regeneration, involving clinicians as well as biologists, stem cell researchers and material scientists. First, in order to provide an appreciation for the complexity of the tooth as a whole, its components and surrounding structures will be described. Next, the basic principles of tooth development will be presented, which can be applied to recreate signaling events and utilize them to build whole teeth. For the regeneration of individual tooth structures, the classical tissue engineering triad can be utilized, using dental stem cells, scaffold materials and relevant growth and differentiation factors. Recent successful engineering initiatives on whole teeth as well as on specific tissues such as enamel, the dentin–pulp complex or periodontal ligament will be discussed. In projecting future research directions, we conclude with a brief discussion of key components necessary to develop effective strategies for dental tissue engineering, which might enable us to implement novel regenerative strategies in clinical practice in the near future.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Petersen PE: World Health Organization global policy for improvement of oral health – World Health Assembly 2007. Int. Dent. J.58(3), 115–121 (2008).
    • Jacobsen P: Restorative Dentistry (2nd Edition). Wiley-Blackwell, Hoboken, NJ, USA (2008).
    • Thesleff I: Epithelial-mesenchymal signalling regulating tooth morphogenesis. J. Cell Sci.116(Pt 9), 1647–1648 (2003).▪ Brief, but concise overview of tooth development.
    • Pispa J, Thesleff I: Mechanisms of ectodermal organogenesis. Dev. Biol.262(2), 195–205 (2003).
    • Miura M, Gronthos S, Zhao M et al.: SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA100(10), 5807–5812 (2003).
    • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA97(25), 13625–13630 (2000).▪ First description of the isolation of stem cells derived from dental tissue.
    • Seo BM, Miura M, Gronthos S et al.: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet364(9429),149–155 (2004).
    • Sonoyama W, Liu Y, Yamaza T et al.: Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J. Endod.34(2),166–171 (2008).
    • Morsczeck C, Götz W, Schierholz J et al.: Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol.24(2),155–165 (2005).
    • 10  Chan G, Mooney DJ: New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol.26(7),382–392 (2008).
    • 11  Langer R, Tirrell DA: Designing materials for biology and medicine. Nature428(6982),487–492 (2004).
    • 12  Nicodemus GD, Bryant SJ: Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B. Rev.14(2),149–165 (2008).
    • 13  Kassai Y, Munne P, Hotta Y et al.: Regulation of mammalian tooth cusp patterning by ectodin. Science309(5743),2067–2070 (2005).
    • 14  ADA Council on scientific affairs: titanium applications in dentistry. J. Am. Dent. Assoc.134(3),347–349 (2003).
    • 15  Yamamoto H, Kim EJ, Cho SW, Jung HS: Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. J. Electron Microsc.52(6),559–566 (2003).
    • 16  Mina M, Kollar EJ: The induction of odontogenesis in nondental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral Biol.32(2),123–127 (1987).
    • 17  Ten Cate AR: The role of epithelium in the development, structure and function of the tissues of tooth support. Oral Dis.2(1),55–62 (1996).
    • 18  Ohazama A, Modino SA, Miletich I, Sharpe PT: Stem-cell-based tissue engineering of murine teeth. J. Dent. Res.83(7),518–522 (2004).
    • 19  Modino SA, Sharpe PT: Tissue engineering of teeth using adult stem cells. Arch. Oral Biol.50(2),255–258 (2005).
    • 20  Yen AH, Sharpe PT: Stem cells and tooth tissue engineering. Cell Tissue Res.331(1),359–372 (2008).
    • 21  Ikeda E, Morita R, Nakao K et al.: Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc. Natl. Acad. Sci. USA106(32),13475–13480 (2009).▪▪ First successfully engineered biotooth, which erupted into the oral cavity and constitutes a functional replacement.
    • 22  Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC: Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J. Dent. Res.81(10),695–700 (2002).
    • 23  Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC: Bioengineered teeth from cultured rat tooth bud cells. J. Dent. Res.83(7),523–528 (2004).
    • 24  Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC: Bioengineered dental tissues grown in the rat jaw. J. Dent. Res.87(8),745–750 (2008).
    • 25  Hu B, Unda F, Bopp-Kuchler S et al.: Bone marrow cells can give rise to ameloblast-like cells. J. Dent. Res.85(5),416–421 (2006).
    • 26  Nakagawa E, Itoh T, Yoshie H, Satokata I: Odontogenic potential of post-natal oral mucosal epithelium. J. Dent. Res.88(3),219–223 (2009).
    • 27  Gronthos S, Brahim J, Li W et al.: Stem cell properties of human dental pulp stem cells. J. Dent. Res.81(8),531–535 (2002).
    • 28  Paino F, Ricci G, De Rosa A et al.: Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur. Cell Mater.20,295–305 (2010).
    • 29  Shi S, Robey PG, Gronthos S: Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone29,532–539 (2001).
    • 30  Wei X, Ling J, Wu L, Liu L, Xiao Y: Expression of mineralization markers in dental pulp cells. J. Endod.33(6),703–708 (2007).
    • 31  Gay IC, Chen S, MacDougall M: Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res.10(3),149–160 (2007).
    • 32  Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S: The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J. Endod.34(6),645–651 (2008).
    • 33  Kémoun P, Laurencin-Dalicieux S, Rue J et al.: Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res.329(2),283–294 (2007).
    • 34  Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A: Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J. Dent. Res.83(8),590–595 (2004).
    • 35  Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res.18(4),696–704 (2003).
    • 36  Tamaoki N, Takahashi K, Tanaka T et al.: Dental pulp cells for induced pluripotent stem cell banking. J. Dent. Res.89(8),773–778 (2010).
    • 37  Smith AJ, Matthews JB, Hall RC: Transforming growth factor-β1 (TGF-β1) in dentine matrix. Ligand activation and receptor expression. Eur. J. Oral Sci.106(Suppl. 1),179–184 (1998).
    • 38  Roberts-Clark DJ, Smith AJ: Angiogenic growth factors in human dentine matrix. Arch. Oral Biol.45(11),1013–1016 (2000).
    • 39  Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch JV, Lesot H: Reactionary dentinogenesis. Int. J. Dev. Biol.39(1),273–280 (1995).
    • 40  Murray PE, Smith AJ: Saving pulps – a biological basis. An overview. Prim. Dent. Care9(1),21–26 (2002).
    • 41  Tziafas D: Basic mechanisms of cytodifferentiation and dentinogenesis during dental pulp repair. Int. J. Dev. Biol.39(1),281–290 (1995).
    • 42  Tziafas D, Alvanou A, Panagiotakopoulos N: Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Arch. Oral Biol.40(10),883–893 (1995).
    • 43  Smith AJ, Murray PE, Sloan AJ, Matthews JB, Zhao S: Trans-dentinal stimulation of tertiary dentinogenesis. Adv. Dent. Res.15,51–54 (2001).
    • 44  Nakashima M, Nagasawa H, Yamada Y, Reddi AH: Regulatory role of transforming growth factor-β, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev. Biol.162(1),18–28 (1994).
    • 45  Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M: Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells24(11),2493–2503 (2006).
    • 46  Sloan AJ, Smith AJ: Stimulation of the dentine–pulp complex of rat incisor teeth by transforming growth factor-β isoforms 1–3 in vitro. Arch. Oral Biol.44(2),149–156 (1999).
    • 47  Sloan AJ, Rutherford RB, Smith AJ: Stimulation of the rat dentine–pulp complex by bone morphogenetic protein-7 in vitro. Arch. Oral Biol.45(2),173–177 (2000).
    • 48  Six N, Decup F, Lasfargues JJ, Salih E, Goldberg M: Osteogenic proteins (bone sialoprotein and bone morphogenetic protein-7) and dental pulp mineralization. J. Mater. Sci. Mater. Med.13(2),225–232 (2002).
    • 49  Lovschall H, Fejerskov O, Flyvberg A: Pulp-capping with recombinant human insulin-like growth factor I (rhIGF-I) in rat molars. Adv. Dent. Res.15,108–112 (2001).
    • 50  Almushayt A, Narayanan K, Zaki AE, George A: Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther.13(7),611–620 (2006).
    • 51  Alliot-Licht B, Bluteau G, Magne D et al.: Dexamethasone stimulates differentiation of odontoblast-like cells in human dental pulp cultures. Cell Tissue Res.321(3),391–400 (2005).
    • 52  Couble ML, Farges JC, Bleicher F, Perrat Mabillon B, Boudeulle M, Magloire H: Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif. Tissue Int.66(2),129–138 (2000).
    • 53  Gomes A, Azevedo H, Malafaya P et al.: Tissue Engineering. van Blitterswijk C (Ed.). Elsevier, London Burlington San Diego, CA, USA (2008).
    • 54  Chan G, Mooney DJ: New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol.26(7),382–392 (2008).
    • 55  Langer R, Tirrell DA: Designing materials for biology and medicine. Nature428(6982),487–492 (2004).
    • 56  Nicodemus GD, Bryant SJ: Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B. Rev.14(2),149–165 (2008).
    • 57  Nam H, Lee G: Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem. Biophys. Res. Commun.386(1),135–139 (2009).
    • 58  Shinmura Y, Tsuchiya S, Hata K, Honda MJ: Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J. Cell Physiol.217(3),728–738 (2008).
    • 59  Featherstone JD: The continuum of dental caries – evidence for a dynamic disease process. J. Dent. Res.83,C39–C42 (2004).
    • 60  Wang X, Xia C, Zhang Z et al.: Direct growth of human enamel-like calcium phosphate microstructures on human tooth. J. Nanosci. Nanotechnol.9(2),1361–1364 (2009).
    • 61  Fan Y, Sun Z, Moradian-Oldak J: Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials30(4),478–483 (2009).
    • 62  Chen H, Clarkson BH, Sun K, Mansfield JF: Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J. Colloid Interface Sci.288(1),97–103 (2005).
    • 63  Kirkham J, Firth A, Vernals D et al.: Self-assembling peptide scaffolds promote enamel remineralization J. Dent. Res.86(5),426–430 (2007).▪ Demonstrates impressively how smart materials can be utilized for tissue engineering purposes.
    • 64  Goldberg M, Farges JC, Lacerda-Pinheiro S et al.: Inflammatory and immunological aspects of dental pulp repair. Pharmacol. Res.58(2),137–147 (2008).
    • 65  Nair PN, Duncan HF, Pitt Ford TR, Luder HU: Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with Mineral Trioxide Aggregate: a randomized controlled trial. Int. Endod. J.42(5),422–444 (2009).
    • 66  Mooney DJ, Powell C, Piana J, Rutherford B: Engineering dental pulp-like tissue in vitro. Biotechnol. Prog.12(6),865–868 (1996).
    • 67  Bohl KS, Shon J, Rutherford B, Mooney DJ: Role of synthetic extracellular matrix in development of engineered dental pulp. J. Biomater. Sci. Polym. Ed.9(7),749–764 (1998).
    • 68  Prescott RS, Alsanea R, Fayad MI et al.: In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J. Endod.34(4),421–426 (2008).
    • 69  Cordeiro MM, Dong Z, Kaneko T et al.: Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J. Endod.34(8),962–969 (2008).
    • 70  Sakai VT, Zhang Z, Dong Z et al.: SHED differentiate into functional odontoblasts and endothelium. J. Dent. Res.89(8),791–796 (2010).▪▪ Shows that dental pulp engineering and even the generation of tubular dentin are possible.
    • 71  Galler KM, Aulisa L, Regan KR, D’Souza RN, Hartgerink JD: Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc.132(9),3217–3223 (2010).
    • 72  Galler KM, Cavender A, Yuwono V et al.: Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Eng. Part A14(12),2051–2058 (2008).
    • 73  Deas DE, Mealey BL: Response of chronic and aggressive periodontitis to treatment. Periodontol. 200053,154–166 (2010).
    • 74  Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF: A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials31(31),7892–7927 (2010).▪ Comprehensive overview of periodontal tissue engineering.
    • 75  Lin NH, Gronthos S, Bartold PM: Stem cells and periodontal regeneration. Aust. Dent. J.53(2),108–121 (2008).
    • 76  Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ: Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst. Rev.19(2),CD001724 (2006).
    • 77  Esposito M, Grusovin MG, Papanikolaou N, Coulthard P, Worthington HV: Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst. Rev.7(4),CD003875 (2009).
    • 78  Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE: Periodontal regeneration in humans using recombinant human platelet-derived growth factor-βB (rhPDGF-BB) and allogenic bone. J. Periodontol.74(9),1282–1292 (2003).
    • 79  Takayama S, Murakami S, Miki Y et al.: Effects of basic fibroblast growth factor on human periodontal ligament cells. J. Periodontal Res.32(8),667–675 (1997).
    • 80  Murakami S, Takayama S, Kitamura M et al.: Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J. Periodontal Res.38(1),97–103 (2003).
    • 81  Sigurdsson TJ, Lee MB, Kubota K, Turek TJ, Wozney JM, Wikesjö UM: Periodontal repair in dogs: recombinant human bone morphogenetic protein-2 significantly enhances periodontal regeneration. J. Periodontol.66(2),131–138 (1995).
    • 82  Choi SH, Kim CK, Cho KS et al.: Effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) on healing in 3-wall intrabony defects in dogs. J. Periodontol.73(1),63–72 (2002).
    • 83  Giannobile WV, Lee CS, Tomala MP, Tejeda KM, Zhu Z: Platelet-derived growth factor (PDGF) gene delivery for application in periodontal tissue engineering. J. Periodontol.72(6),815–823 (2001).
    • 84  Jin QM, Anusaksathien O, Webb SA, Rutherford RB, Giannobile WV: Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J. Periodontol.74(2),202–213 (2003).
    • 85  Hu WW, Wang Z, Hollister SJ, Krebsbach PH: Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther.14(11),891–901 (2007).
    • 86  Kawaguchi H, Hirachi A, Hasegawa N et al.: Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J. Periodontol.75(9),1281–1287 (2004).
    • 87  Sonoyama W, Liu Y, Fang D et al.: Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE1,e79 (2006).
    • 88  Snead ML: Whole-tooth regeneration: it takes a village of scientists, clinicians, and patients. J. Dent. Educ.72(8),903–911 (2008).▪ A team of researchers was formed in 2006 to identify all the building blocks to bioengineer a whole tooth in an interdisciplinary approach involving stem cell and computational biology, material science and tissue engineering.
    • 89  Tziafas D, Koliniotou-Koumpia E, Tziafas C, Papadimitriou S: Effects of a new antibacterial adhesive on the repair capacity of the pulp–dentine complex in infected teeth. Int. Endod. J.40(1),58–66 (2007).