We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Myc transcription factors: key regulators behind establishment and maintenance of pluripotency

    Keriayn Smith

    Paul D Coverdell Center for Biomedical & Health Sciences, Department of Biochemistry & Molecular Biology, University of Georgia, 500 DW Brooks Drive, Athens, GA 30602, USA

    Genetic Medicine Building, Department of Genetics, University of North Carolina – Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA

    &
    Published Online:https://doi.org/10.2217/rme.10.79

    The interplay between transcription factors, epigenetic modifiers, chromatin remodelers and miRNAs form the foundation of a complex regulatory network required for establishment and maintenance of the pluripotent state. Recent work indicates that Myc transcription factors are essential elements of this regulatory system. However, despite numerous studies, aspects of how Myc controls self-renewal and pluripotency remain obscure. This article reviews evidence supporting the placement of Myc as a central regulator of the pluripotent state and discusses possible mechanisms of action.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78,7634–7638 (1981).
    • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282,1145–1147 (1998).
    • Evans M, Kaufman M: Establishment in culture of pluripotential cells from mouse embryos. Nature292(5819),154–156 (1981).
    • Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126,663–676 (2006).▪▪ The first description of induced pluripotent stem (iPS) cells.
    • Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131,861–872 (2007).
    • Chin MH, Mason MJ, Xie W et al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5,111–123 (2009).
    • Maherali N, Sridharan R, Xie W et al.: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1,55–70 (2007).
    • Loebel DAF, Watson CM, De Young RA, Tam PPL: Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev. Biol.264,1–14 (2003).
    • Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature448,313–317 (2007).▪ In this study, therapeutic implications of iPS cells generated using exogenous Myc was indicated.
    • 10  Yamanaka S, Li J, Kania G et al.: Pluripotency of embryonic stem cells. Cell Tissue Res.331,5–22 (2008).
    • 11  Yamanaka S: A fresh look at iPS cells. Cell137,13–17 (2009).
    • 12  Hochedlinger K, Plath K: Epigenetic reprogramming and induced pluripotency. Development136,509–523 (2009).
    • 13  Eisenman RN: Deconstructing Myc. Genes Dev.15,2023–2030 (2001).
    • 14  Levens DL: Reconstructing Myc. Genes Dev.17,1071–1077 (2003).
    • 15  Levens D: Disentangling the Myc web. Proc. Natl Acad. Sci. USA99,5757–5759 (2002).
    • 16  Cole MD, Henriksson M: 25 years of the c-Myc oncogene. Semin. Cancer Biol.16,241 (2006).
    • 17  Meyer N, Penn LZ: Reflecting on 25 years with Myc. Nat. Rev. Cancer8,976–990 (2008).
    • 18  Adhikary S, Eilers M: Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol.6,635–645 (2005).
    • 19  Cotterman R, Jin VX, Krig SR et al.: N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classical transcription factor. Cancer Res.68,9654–9662 (2008).
    • 20  Luscher B, Larsson LG: The basic region/helix–loop–helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene18,2955–2966 (1999).
    • 21  Brenner C, Deplus R, Didelot C et al.: Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J.24,336–346 (2005).
    • 22  Fernandez PC, Frank SR, Wang L et al.: Genomic targets of the human c-Myc protein. Genes Dev.17,1115–1129 (2003).▪ Demonstrates the potential for Myc to occupy and regulate numerous target genes.
    • 23  Blackwell T, Huang J, Ma A et al.: Binding of myc proteins to canonical and noncanonical DNA sequences. Mol. Cell. Biol.13,5216–5224 (1993).
    • 24  Eilers M, Eisenman RN: Myc’s broad reach. Genes Dev.22(20),2755–2766 (2008).
    • 25  Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F: The c-Myc target gene network. Semin. Cancer Biol.16,253–264 (2006).
    • 26  Blackwood E and Eisenman R: Max: a helix–loop–helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science251,1211–1217 (1991).
    • 27  Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H: Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell72,233–245 (1993).
    • 28  Ma A, Moroy T, Collum R, Weintraub H, Alt FW, Blackwell TK: DNA binding by N- and L-Myc proteins. Oncogene8,1093–1098 (1993).
    • 29  Barrett J, Birrer MJ, Kato GJ, Dosaka-Akita H, Dang CV: Activation domains of L-Myc and c-Myc determine their transforming potencies in rat embryo cells. Mol. Cell. Biol.12,3130–3137 (1992).
    • 30  Dominguez-Sola D, Ying CY, Grandori C et al.: Non-transcriptional control of DNA replication by c-Myc. Nature448,445–451 (2007).
    • 31  Peukert K, Staller P, Schneider A, Carmichael G, Hänel F, Eilers M: An alternative pathway for gene regulation by Myc. EMBO J.16,5672 (1997).
    • 32  Philipp A, Schneider A, Vasrik I et al.: Repression of cyclin D1: a novel function of MYC. Mol. Cell. Biol.14,4032–4043 (1994).
    • 33  Arabi A, Wu S, Ridderstråle K et al.: c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol.7,303–310 (2005).
    • 34  Gomez-Roman N, Grandori C, Eisenman RN, White RJ: Direct activation of RNA polymerase III transcription by c-Myc. Nature421,290–294 (2003).
    • 35  Cowling VH, Cole MD: The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol. Cell. Biol.27,2059–2073 (2007).
    • 36  Wert M, Kennedy S, Palfrey HC, Hay N: Myc drives apoptosis in PC12 cells in the absence of Max. Oncogene20,3746–3750 (2001).
    • 37  Secombe J, Li L, Carlos L, Eisenman RN: The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev.21,537 (2007).
    • 38  Orian A, van Steensel B, Delrow J et al.: Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev.17,1101–1114 (2003).
    • 39  Malynn BA, de Alboran IM, O’Hagan RC et al.: N-Myc can functionally replace c-Myc in murine development, cellular growth, and differentiation. Genes Dev.14,1390–1399 (2000).
    • 40  Zimmerman KA, Yancopoulos GD, Collum RG et al.: Differential expression of Myc family genes during murine development. Nature319(6056),780–783 (1986).
    • 41  Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF: Loss of N-Myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev.6,2235–2247 (1992).
    • 42  Charron J, Malynn BA, Fisher P et al.: Embryonic lethality in mice homozygous for a targeted disruption of the N-Myc gene. Genes Dev.6,2248–2257 (1992).
    • 43  Davis AC, Wims M, Spotts GD, Hann SR, Bradley A: A null c-Myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev.7,671–682 (1993).
    • 44  Trumpp A, Refaeli Y, Oskarsson T et al.: c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature414,768–773 (2001).
    • 45  Dubois NC, Adolphe C, Ehninger A, Wang RA, Robertson EJ, Trumpp A: Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development135,2455–2465 (2008).
    • 46  Smith KN, Singh AM, Dalton S: Myc sustains pluripotency by repressing primitive endoderm specification. Cell Stem Cell7,343–354 (2010).▪ Defines mechanisms by which Myc sustains pluripotent stem cells, and suggests Myc is required for early embryonic development.
    • 47  Varlakhanova NV, Cotterman RF, deVries WN et al.: Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation80,9–19 (2010).▪ Using doubly floxed alleles, this study demonstrates that Myc inhibits differentiation to maintain pluripotent stem cells, and suggests that Myc is required for early embryonic development.
    • 48  Hatton KS, Mahon K, Chin L et al.: Expression and activity of L-Myc in normal mouse development. Mol. Cell. Biol.16,1794–1804 (1996).
    • 49  Yi F, Jaffe R, Prochownik EV: The CCL6 chemokine is differentially regulated by c-Myc and L-Myc, and promotes tumorigenesis and metastasis 1. Cancer Res.63,2923–2932 (2003).
    • 50  Landay M, Oster SK, Khosravi F et al.: Promotion of growth and apoptosis in c-myc nullizygous fibroblasts by other members of the myc oncoprotein family. Cell Death Differ.7,697–705 (2000).
    • 51  Shen-Li H, O’Hagan RC, Hou H, Horner JW, Lee HW, DePinho RA: Essential role for Max in early embryonic growth and development. Genes Dev.14,17–22 (2000).
    • 52  Smith AG, Heath JK, Donaldson DD et al.: Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature336,688–690 (1988).
    • 53  Niwa H, Burdon T, Chambers I, Smith A: Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev.12,2048–2060 (1998).
    • 54  Ying QL, Nichols J, Chambers I, Smith A: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115,281–292 (2003).
    • 55  Boyer LA, Lee TI, Cole MF et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122,947–956 (2005).
    • 56  Marson A, Levine SS, Cole MF et al.: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134,521–533 (2008).
    • 57  Boyer LA, Mathur D, Jaenisch R: Molecular control of pluripotency. Curr. Opin. Genet. Dev.16,455–462 (2006).
    • 58  Kim J, Chu J, Shen X, Wang J, Orkin SH: An extended transcriptional network for pluripotency of embryonic stem cells. Cell132,1049–1061 (2008).
    • 59  Wang J, Rao S, Chu J et al.: A protein interaction network for pluripotency of embryonic stem cells. Nature444,364–368 (2006).
    • 60  Liang J, Wan M, Zhang Y et al.: Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat. Cell Biol.10,731–739 (2008).
    • 61  Boyer LA, Plath K, Zeitlinger J et al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441,349–353 (2006).
    • 62  Lee TI, Jenner RG, Boyer LA et al.: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell125,301–313 (2006).
    • 63  Loh YH, Wu Q, Chew JL et al.: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet.38,431–440 (2006).
    • 64  Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S: LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development132,885–896 (2005).
    • 65  Knoepfler PS, Cheng PF, Eisenman RN: N-Myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev.16,2699–2712 (2002).
    • 66  Okubo T, Knoepfler PS, Eisenman RN, Hogan BLM: N-myc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development132,1363 (2005).
    • 67  Laurenti E, Varnum-Finney B, Wilson A et al.: Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell3,611–624 (2008).▪ Demonstrates an absolute requirement for c- or N-Myc in maintaining hematopoietic stem cells.
    • 68  Wilson A, Murphy MJ, Oskarsson T et al.: c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev.18,2747–2763 (2004).
    • 69  Gandarillas A, Watt FM: c-Myc promotes differentiation of human epidermal stem cells. Genes Dev.11,2869–2882 (1997).
    • 70  Baudino TA, McKay C, Pendeville-Samain H et al.: c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev.16,2530–2543 (2002).
    • 71  Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S: Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl Acad. Sci. USA107(32),14152–14157 (2010).
    • 72  Hanna J, Markoulaki S, Mitalipova M et al.: Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell4,513–524 (2009).
    • 73  Chen X, Xu H, Yuan P et al.: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133,1106–1117 (2008).
    • 74  Kidder BL, Yang J, Palmer S: Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS ONE3,e3932–e3932 (2008).
    • 75  Sridharan R, Tchieu J, Mason MJ et al.: Role of the murine reprogramming factors in the induction of pluripotency. Cell136,364–377 (2009).▪▪ By analyzing transcriptional changes during the reprogramming process, this study demonstrates that Myc is solely responsible for widespread gene expression changes in iPS cell generation.
    • 76  Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ: A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev.23(7),837–848 (2009).
    • 77  Zeller KI, Zhao X, Lee CWH et al.: Global mapping of c-Myc binding sites and target gene networks in human B-cells. Proc. Natl Acad. Sci. USA103,17834–17839 (2006).
    • 78  Rahl PB, Lin CY, Seila AC et al.: c-Myc regulates transcriptional pause release. Cell141,432–435 (2010).▪▪ Implicates Myc as a regulator of large numbers of transcribed genes in embryonic stem cells owing to its role in Pol II pause–release.
    • 79  Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN: Myc influences global chromatin structure. EMBO J.25,2723–2734 (2006).▪▪ Initially demonstrated that globally Myc controls chromatin structure.
    • 80  White J, Dalton S: Cell cycle control of embryonic stem cells. Stem Cell Rev.1,131–138 (2005).
    • 81  Stead E, White J, Faast R et al.: Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene21,8320–8333 (2002).
    • 82  Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S: CDK6–cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene23,491–502 (2004).
    • 83  White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S: Developmental activation of the Rb–E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol. Biol. Cell.16,2018–2027 (2005).
    • 84  Goodrich DW, Wang NP, Qian YW, Lee EYHP, Lee WH: The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell67,293–302 (1981).
    • 85  Rustgi AK, Dyson N, Bernards R: Amino-terminal domains of c-Myc and N-Myc proteins mediate binding to the retinoblastoma gene product. Nature352(6335),541–544 (1991).
    • 86  Goodrich DW, Lee WH: Abrogation by c-Myc of Gl phase arrest induced by Rb protein but not by p53. Nature360,177–179 (1992).
    • 87  Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol.6,376–385 (2005).
    • 88  He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5,522–531 (2004).
    • 89  Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN: Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J.28,3157–3170 (2009).
    • 90  Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R: Embryonic stem cell-specific microRNAs regulate the G1–S transition and promote rapid proliferation. Nat. Genet.40(12),1478–1483 (2008).
    • 91  O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature435,839–843 (2005).▪ Demonstrates the widespread impact of Myc on miRNA expression.
    • 92  Northcott PA, Fernandez-L A, Hagan JP et al.: The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res.69,3249 (2009).
    • 93  Chen C, Ridzon D, Lee CT, Blake J, Sun Y, Strauss WM: Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm. Genome18,316–327 (2007).
    • 94  Judson RL, Babiarz JE, Venere M, Blelloch R: Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol.27(5),459–461 (2009).
    • 95  Melton C, Judson RL, Blelloch R: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature463,621–626 (2010).
    • 96  Chang TC, Yu D, Lee YS et al.: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet.40,43–50 (2007).
    • 97  Liu Q, Fu H, Sun F et al.: miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res.36,5391 (2008).
    • 98  Meshorer E, Misteli T: Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol.7(7),540–546 (2006).
    • 99  Golob JL, Paige SL, Muskheli V, Pabon L, Murry CE: Chromatin remodeling during mouse and human embryonic stem cell differentiation. Dev. Dyn.237(5),1389–1398 (2008).
    • 100  Efroni S, Duttagupta R, Cheng J et al.: Global transcription in pluripotent embryonic stem cells. Cell Stem Cell2,437–447 (2008).
    • 101  Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc. Natl Acad. Sci. USA106,5187–5191 (2009).
    • 102  Martinato F, Cesaroni M, Amati B, Guccione E: Analysis of Myc-induced histone modifications on target chromatin. PLoS ONE3(11),e3650 (2008).
    • 103  Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B: Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev.15,2069–2082 (2001).
    • 104  Koch HB, Zhang R, Verdoodt B et al.: Large-scale identification of c-Myc-associated proteins using a combined TAP/MudPIT approach. Cell Cycle6,205–217 (2007).
    • 105  Frank SR, Parisi T, Taubert S et al.: MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep.4,575–580 (2003).
    • 106  McMahon SB, Wood MA, Cole MD: The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol.20,556–562 (2000).
    • 107  Cheng SWG, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV: c-Myc interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat. Genet.22,102–105 (1999).
    • 108  Faiola F, Liu X, Lo S et al.: Dual regulation of c-Myc by p300 via acetylation-dependent control of myc protein turnover and coactivation of myc-induced transcription. Mol. Cell. Biol.25,10220–10234 (2005).
    • 109  Frank SR, Parisi T, Taubert S et al.: MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep.4,575 (2003).
    • 110  Dugan KA, Wood MA, Cole MD: TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene21,5835–5843 (2002).
    • 111  Szutorisz H, Dillon N: The epigenetic basis for embryonic stem cell pluripotency. Bioessays27(12),1286–1293 (2005).
    • 112  Bernstein BE, Mikkelsen TS, Xie X et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125,315–326 (2006).
    • 113  Mikkelsen TS, Ku M, Jaffe DB et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. 448(7153),553–560 (2007).
    • 114  Guccione E, Martinato F, Finocchiaro G et al.: Myc-binding-site recognition in the human genome is determined by chromatin context. Nat. Cell Biol.8,764–770 (2006).
    • 115  Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20,1123–1136 (2006).
    • 116  Leon J, Ferrandiz N, Acosta JC, Delgado MD: Inhibition of cell differentiation: a critical mechanism for MYC-mediated carcinogenesis? Cell Cycle8(8),1148–1157 (2009).
    • 117  Sridharan R, Plath K: Illuminating the black box of reprogramming. Cell Stem Cell2,295–297 (2008).
    • 118  Huangfu D, Osafune K, Maehr R et al.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol.26,1269–1275 (2008).
    • 119  Shi Y, Do T: A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell2,525–528 (2008).
    • 120  Mikkelsen TS, Hanna J, Zhang X et al.: Dissecting direct reprogramming through integrative genomic analysis. Nature454,49–55 (2008).
    • 121  Marion RM, Strati K, Li H et al.: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell4,141–154 (2009).
    • 122  Greenberg RA, O’Hagan RC, Deng H et al.: Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene18,1219–1226 (1999).
    • 123  Wang J, Xie LY, Allan S, Beach D, Hannon GJ: Myc activates telomerase. Genes Dev.12,1769–1774 (1998).
    • 124  Amabile G, Meissner A: Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol. Med.15,59–68 (2009).
    • 125  Maherali N, Hochedlinger K: Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell3,595–605 (2008).
    • 126  Eilers M, Schirm S, Bishop J: The Myc protein activates transcription of the α-prothymosin gene. EMBO J.10,133 (1991).
    • 127  Eilers M, Picard D, Yamamoto KR, Bishop JM: Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. 340(6228),66–68 (1989).
    • 128  Bouchard C, Staller P, Eilers M: Control of cell proliferation by Myc. Trends Cell Biol.8,202–206 (1998).
    • 129  Hong H, Takahashi K, Ichisaka T et al.: Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature460,1132–1135 (2009).▪▪ Links the success of reprogramming to cell cycle and proliferation regulators.
    • 130  Hanna J, Saha K, Pando B et al.: Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462,595–601 (2009).▪▪ Assesses the kinetics of the reprogramming process and links the success of reprogramming to cell cycle and proliferation regulators.
    • 131  Fontana L, Fiori ME, Albini S et al.: Antagomir-17–5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE3(5),e2236 (2008).
    • 132  Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H: Cyclins D1 and D2 mediate Myc-induced proliferation via sequestration of p27Kip1 and p21Cip1. EMBO J.18,5310–5320 (1999).
    • 133  Mendell JT: miRiad roles for the miR-17–92 cluster in development and disease. Cell133,217–222 (2008).
    • 134  Singh AM, Dalton S: The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell5,141–149 (2009).
    • 135  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318,1917–1920 (2007).
    • 136  Lin CH, Lin CW, Tanaka H, Fero ML, Eisenman RN: Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. 4(11),e7839 (2009).
    • 137  Balzer E, Moss EG: Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol.4,16–25 (2007).
    • 138  Secombe J, Pierce SB, Eisenman RN: Myc: a weapon of mass destruction. Cell117,153–156 (2004).
    • 139  Nilsson JA, Cleveland JL: Myc pathways provoking cell suicide and cancer. Oncogene22,9007–9021 (2003).
    • 140  Jordan CT: Cancer stem cell biology: from leukemia to solid tumors. Curr. Opin. Cell Biol.16,708–712 (2004).
    • 141  Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature292,154–156 (1981).
    • 142  Hoffman B, Amanullah A, Shafarenko M, Liebermann DA: The proto-oncogene c-Myc in hematopoietic development and leukemogenesis. Oncogene21,3414–3421 (2002).
    • 143  Rowland BD, Peeper DS: KLF4, p21 and context-dependent opposing forces in cancer. Nat. Rev. Cancer6,11–23 (2005).
    • 144  Wang J, Wang H, Li Z et al.: c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE3(11),e3769 (2008).
    • 145  Shachaf CM, Kopelman AM, Arvanitis C et al.: MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature431,1112–1117 (2004).
    • 146  Felsher DW, Bishop JM: Reversible tumorigenesis by MYC in hematopoietic lineages. Mol.Cell4,199–207 (1999).
    • 147  Jain M, Arvanitis C, Chu K et al.: Sustained loss of a neoplastic phenotype by brief inactivation of Myc. Science297,102–104 (2002).
    • 148  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126,663–676 (2006).
    • 149  Aoi T, Yae K, Nakagawa M et al.: Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321,699–702 (2008).
    • 150  Hanna J, Markoulaki S, Schorderet P et al.: Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell133,250–264 (2008).
    • 151  Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K: Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells26,2467–2474 (2008).
    • 152  Kim JB, Zaehres H, Wu G et al.: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature454,646–650 (2008).
    • 153  Stadtfeld M, Brennand K, Hochedlinger K: Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr. Biol.18,890–894 (2008).
    • 154  Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448,318–324 (2007).
    • 155  Park IH, Arora N, Huo H et al.: Disease-specific induced pluripotent stem cells. Cell134,877–886 (2008).
    • 156  Aasen T, Raya A, Barrero MJ et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26,1276–1284 (2008).
    • 157  Sun N, Panetta NJ, Gupta DM et al.: Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl Acad. Sci. USA106,15720–15725 (2009).
    • 158  Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A, Belmonte JCI: Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat. Protoc.5,811–820 (2010).
    • 159  Loh YH, Agarwal S, Park IH et al.: Generation of induced pluripotent stem cells from human blood. Blood113,5476–5479 (2009).
    • 160  Carette JE, Pruszak J, Varadarajan M et al.: Generation of iPSCs from cultured human malignant cells. Blood115,4039–4040 (2010).
    • 161  Wu Y, Zhang Y, Mishra A, Tardif SD, Hornsby PJ: Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Res.4(3),180–188 (2010).
    • 162  Liao J, Cui C, Chen S et al.: Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell4,11–15 (2009).
    • 163  Ezashi T, Telugu BPVL, Alexenko AP, Sachdev S, Sinha S, Roberts RM: Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl Acad. Sci. USA106,10993 (2009).
    • 164  Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T: Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev.77(1),2 (2010).
    • 165  Honda A, Hirose M, Hatori M et al.: Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J. Biol. Chem.285(41),31362–31369 (2010).
    • 166  Lee TH, Song SH, Kim KL et al.: Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ. Res.106(1),120–128 (2010).
    • 167  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • 168  Haase A, Olmer R, Schwanke K et al.: Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell5,434–441 (2009).
    • 169  Nakagawa M, Koyanagi M, Tanabe K et al.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26,101–106 (2008).
    • 170  Wernig M, Meissner A, Cassady JP, Jaenisch R: c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell2,10–12 (2008).
    • 171  Aoki T, Ohnishi H, Oda Y et al.: Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-Myc. Tissue Eng. Part A16(7),2197–2206 (2010).
    • 172  Huangfu D, Maehr R, Guo W et al.: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26,795–797 (2008).
    • 173  Kim JB, Sebastiano V, Wu G et al.: Oct4-induced pluripotency in adult neural stem cells. Cell136,411–419 (2009).
    • 201  Myc Cancer Gene www.myccancergene.org