We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Mesenchymal stem cells for the treatment of neurodegenerative disease

    Nanette Joyce

    Department of Internal Medicine, Division of Hematology/Oncology, Stem Cell Program, University of California, Davis, CA, USA: Stem Cell Program & Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Blvd, Room 1300, Sacramento, CA 95817, USA

    ,
    Geralyn Annett

    Department of Internal Medicine, Division of Hematology/Oncology, Stem Cell Program, University of California, Davis, CA, USA: Stem Cell Program & Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Blvd, Room 1300, Sacramento, CA 95817, USA

    ,
    Louisa Wirthlin

    Department of Internal Medicine, Division of Hematology/Oncology, Stem Cell Program, University of California, Davis, CA, USA: Stem Cell Program & Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Blvd, Room 1300, Sacramento, CA 95817, USA

    ,
    Scott Olson

    Department of Internal Medicine, Division of Hematology/Oncology, Stem Cell Program, University of California, Davis, CA, USA: Stem Cell Program & Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Blvd, Room 1300, Sacramento, CA 95817, USA

    ,
    Gerhard Bauer

    Department of Internal Medicine, Division of Hematology/Oncology, Stem Cell Program, University of California, Davis, CA, USA: Stem Cell Program & Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Blvd, Room 1300, Sacramento, CA 95817, USA

    &
    Published Online:https://doi.org/10.2217/rme.10.72

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington’s disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Williams JT, Southerland SS, Souza J et al.: Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am. Surg.65,22–26 (1999).
    • Galmiche MC, Koteliansky VE, Briere J et al.: Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood82,66–76 (1993).
    • Theise ND, Nimmakayalu M, Gardner R et al.: Liver from bone marrow in humans. Hepatology32,11–16 (2000).
    • Theise ND, Badve S, Saxena R et al.: Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology31,235–240 (2000).
    • Petersen BE, Bowen WC, Patrene KD et al.: Bone marrow as a potential source of hepatic oval cells. Science284,1168–1170 (1999).
    • Lagasse E, Connors H, Al-Dhalimy M et al.: Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med.6,1229–1234 (2000).
    • Orlic D, Kajstura J, Chimenti S et al.: Bone marrow cells regenerate infarcted myocardium. Nature410,701–705 (2001).
    • Wu GD, Nolta JA, Jin YS et al.: Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation75,679–685 (2003).
    • Jackson KA, Majka SM, Wang H et al.: Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest.107,1395–1402 (2001).
    • 10  Zimmet JM, Hare JM: Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res. Cardiol.100,471–481 (2005).
    • 11  Davidoff AM, Ng CY, Brown P et al.: Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res.7,2870–2879 (2001).
    • 12  Crisa L, Cirulli V, Smith KA et al.: Human cord blood progenitors sustain thymic T-cell development and a novel form of angiogenesis. Blood94,3928–3940 (1999).
    • 13  Peichev M, Naiyer AJ, Pereira D et al.: Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood95,952–958 (2000).
    • 14  Le Blanc K: Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy8,559–561 (2006).▪ Discusses mechanisms by which allogenic mesenchymal stem cells (MSCs) shelter themseleves from the host immune system.
    • 15  Laflamme MA, Murry CE: Regenerating the heart. Nat. Biotechnol.23,845–856 (2005).
    • 16  Chen J, Li Y, Katakowski M et al.: Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res.73,778–786 (2003).
    • 17  Li Y, Chen J, Zhang CL et al.: Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia49,407–417 (2005).
    • 18  Murphy JM, Fink DJ, Hunziker EB et al.: Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum.48,3464–3474 (2003).
    • 19  Rosova I, Dao M, Capoccia B et al.: Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells26(8),2173–2182 (2008).
    • 20  Kinnaird T, Stabile E, Burnett MS et al.: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res.94,678–685 (2004).
    • 21  Gnecchi M, He H, Noiseux N et al.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J.20,661–669 (2006).
    • 22  Meyerrose T, De Ugarte D, Hofling A et al.: In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells25,220–227 (2007).
    • 23  Meyerrose TE, Roberts M, Ohlemiller KK et al.: Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells26,1713–1722 (2008).
    • 24  Bauer G, Dao MA, Case SS et al.: In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol. Ther.16,1308–1315 (2008).▪▪ Represents a decade-long biosafety study that confirmed the safety of genetically engineered human MSCs, tested in vivo.
    • 25  Dao MA, Pepper KA, Nolta JA: Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells15,443–454 (1997).▪ One of the earliest reports of the durability and safety of systemic production of growth factors from genetically engineered human MSCs.
    • 26  Nolta J: Genetic Engineering of Mesenchymal Stem Cells. Springer, Dordrecht, The Netherlands (2006).
    • 27  Capoccia BJ, Robson DL, Levac KD et al.: Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood113,5340–5351 (2009).
    • 28  Danielyan L, Schafer R, von Ameln-Mayerhofer A et al.: Intranasal delivery of cells to the brain. Eur. J. Cell Biol.88,315–324 (2009).
    • 29  Crigler L, Robey RC, Asawachaicharn A et al.: Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol.198,54–64 (2006).▪▪ Comprehensive examination of the effects of MSCs on neurons.
    • 30  Munoz JR, Stoutenger BR, Robinson AP et al.: Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc. Natl Acad. Sci. USA102,18171–18176 (2005).
    • 31  Kassis I, Grigoriadis N, Gowda-Kurkalli B et al.: Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch. Neurol.65,753–761 (2008).▪ In vivo MSC-based neuroprotection model.
    • 32  Tolar J, Nauta AJ, Osborn MJ et al.: Sarcoma derived from cultured mesenchymal stem cells. Stem Cells25(2),371–379 (2007).
    • 33  Kidd S, Spaeth E, Dembinski JL et al.: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells27,2614–2623 (2009).
    • 34  Kidd S, Spaeth E, Klopp A et al.: The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy10,657–667 (2008).
    • 35  Kim HJ, McMillan E, Han F et al.: Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells27,390–398 (2009).
    • 36  Sharp J, Keirstead HS: Stem cell-based cell replacement strategies for the central nervous system. Neurosci. Lett.456,107–111 (2009).
    • 37  Hardy SA, Maltman DJ, Przyborski SA: Mesenchymal stem cells as mediators of neural differentiation. Curr. Stem Cell Res. Ther.3,43–52 (2008).▪▪ Effects of MSCs on differentiation from neural precursors.
    • 38  Rechavi O, Goldstein I, Kloog Y: Intercellular exchange of proteins: the immune cell habit of sharing. FEBS Lett.583,1792–1799 (2009).
    • 39  Spees JL, Olson SD, Whitney MJ et al.: Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA103,1283–1288 (2006).▪▪ An important paradigm-shifting study that definitively demonstrated that human MSCs can transfer components as large as mitochondria to other, damaged cells, through direct cell-to-cell trafficking.
    • 40  Wilkins A, Kemp K, Ginty M et al.: Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. (2009 (Epub ahead of print).▪ Secretion of brain-derived neurotrophic factor (BDNF) from MSCs promotes neuronal survival.
    • 41  Endo Y, Beauchamp E, Woods D et al.: Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in Ewing tumor cells via a Frizzled3- and c-Jun N-terminal kinase-dependent mechanism. Mol. Cell Biol.28,2368–2379 (2008).
    • 42  Etheridge SL, Spencer GJ, Heath DJ et al.: Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells22,849–860 (2004).
    • 43  Gregory CA, Singh H, Perry AS et al.: The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J. Biol. Chem.278,28067–28078 (2003).
    • 44  Allen J, Chilton JK: The specific targeting of guidance receptors within neurons: who directs the directors? Dev. Biol.327,4–11 (2009).
    • 45  Aizman I, Tate CC, McGrogan M et al.: Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J. Neurosci. Res.87,3198–3206 (2009).
    • 46  Croft AP, Przyborski SA: Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp. Neurol.216,329–341 (2009).
    • 47  Boudreau RL, McBride JL, Martins I et al.: Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol. Ther.17,1053–1063 (2009).
    • 48  Harper SQ, Staber PD, He X et al.: RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc. Natl Acad. Sci. USA102,5820–5825 (2005).
    • 49  DiFiglia M, Sena-Esteves M, Chase K et al.: Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc. Natl Acad. Sci. USA104,17204–17209 (2007).
    • 50  Wang YL, Liu W, Wada E et al.: Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci. Res.53,241–249 (2005).
    • 51  Lombardi MS, Jaspers L, Spronkmans C et al.: A majority of Huntington’s disease patients may be treatable by individualized allele-specific RNA interference. Exp. Neurol.217,312–319 (2009).
    • 52  Pfister EL, Kennington L, Straubhaar J et al.: Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr. Biol.19,774–778 (2009).
    • 53  Zhang Y, Engelman J, Friedlander RM: Allele-specific silencing of mutant Huntington’s disease gene. J. Neurochem.108,82–90 (2009).
    • 54  Lescaudron L, Unni D, Dunbar GL: Autologous adult bone marrow stem cell transplantation in an animal model of Huntington’s disease: behavioral and morphological outcomes. Int. J. Neurosci.113,945–956 (2003).
    • 55  Bantubungi K, Blum D, Cuvelier L et al.: Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington’s disease. Mol. Cell. Neurosci.37,454–470 (2008).
    • 56  Amin EM, Reza BA, Morteza BR et al.: Microanatomical evidences for potential of mesenchymal stem cells in amelioration of striatal degeneration. Neurol. Res.30,1086–1090 (2008).▪ MSCs could delay striatal decline in a Huntingdon’s disease (HD) model.
    • 57  Watts C, McNamara IR, Dunnett SB: Volume and differentiation of striatal grafts in rats: relationship to the number of cells implanted. Cell Transplant.9,65–72 (2000).
    • 58  Delcroix GJ, Jacquart M, Lemaire L et al.: Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Res.1255,18–31 (2009).
    • 59  Sadan O, Shemesh N, Barzilay R et al.: Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells26,2542–2551 (2008).▪▪ Demonstrates that MSCs migrated specifically to the region of striatal damage after infusion into the brain in an HD rat model.
    • 60  Sadan O, Shemesh N, Cohen Y et al.: Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases. Isr. Med. Assoc. J.11,201–204 (2009).
    • 61  Bachoud-Levi AC, Gaura V, Brugieres P et al.: Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol.5,303–309 (2006).
    • 62  Gaura V, Bachoud-Levi AC, Ribeiro MJ et al.: Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain127,65–72 (2004).
    • 63  Canals JM, Pineda JR, Torres-Peraza JF et al.: Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J. Neurosci.24,7727–7739 (2004).
    • 64  Her LS, Goldstein LS: Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J. Neurosci.28,13662–13672 (2008).
    • 65  Wu LL, Fan Y, Li S et al.: Huntingtin associated protein-1 interacts with proBDNF and mediates its transport and release. J. Biol. Chem.285(8),5614–5623 (2009).
    • 66  Gharami K, Xie Y, An JJ et al.: Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington’s disease phenotypes in mice. J. Neurochem.105,369–379 (2008).
    • 67  Zuccato C, Cattaneo E: Brain-derived neurotrophic factor in neurodegenerative diseases. Nature Rev.5,311–322 (2009).▪ Highlights the importance of BDNF in ameliorating the neurodegeneration that occurs in HD.
    • 68  Alberch J, Perez-Navarro E, Canals JM: Neurotrophic factors in Huntington’s disease. Prog. Brain Res.146,195–229 (2004).
    • 69  Dey ND, Bombard MC, Roland BP et al.: Genetically-engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav. Brain Res.214(2),193–200 (2010).▪▪ Both BDNF-modified and non-modified MSCs had significant effects in reducing the behavioral defects in an HD mouse model.
    • 70  Nolta JA, Dao MA, Wells S et al.: Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc. Natl Acad. Sci. USA93,2414–2419 (1996).
    • 71  Nolta JA, Kohn DB: Comparison of the effects of growth factors on retroviral vector-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells. Hum. Gene Ther.1,257–268 (1990).
    • 72  Tsark E, Dao M, Wang X et al.: IL-7 enhances the responsiveness of human T cells that develop in the bone marrow of athymic mice. J. Immunol.166,170–181 (2001).
    • 73  Wang X, Ge S, McNamara G et al.: Albumin expressing hepatocyte-like cells develop in the livers of immune-deficient mice transmitted with highly purified human hematopoietic stem cells. Blood101(10),4201–4208 (2003).
    • 74  Nolta JA, Hanley MB, Kohn DB: Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood83,3041–3051 (1994).
    • 75  Meyerrose T, Rosova I, Dao M et al.: Establishment and Transduction of Primary Human Stromal/ Mesenchymal Stem Cell Monolayers. Kluwer Academic Publishers, Dordrecht, The Netherlands (2006).
    • 76  Vucic S, Kiernan MC: Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis. Curr. Mol. Med.9,255–272 (2009).
    • 77  Maxwell MM: RNAi applications in therapy development for neurodegenerative disease. Curr. Pharm. Des.15,3977–3991 (2009).
    • 78  Kim SU, de Vellis J: Stem cell-based cell therapy in neurological diseases: a review. J. Neurosci. Res.87,2183–2200 (2009).
    • 79  Ionov ID: Survey of ALS-associated factors potentially promoting Ca2+ overload of motor neurons. Amyotroph. Lateral Scler.8,260–265 (2007).
    • 80  Julien JP, Kriz J: Transgenic mouse models of amyotrophic lateral sclerosis. Biochim. Biophys. Acta1762,1013–1024 (2006).
    • 81  Bruijn LI, Miller TM, Cleveland DW: Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci.27,723–749 (2004).
    • 82  Zhao CP, Zhang C, Zhou SN et al.: Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy9,414–426 (2007).▪▪ Demonstrates the positive effects of MSCs in an amyotrophic lateral sclerosis (ALS) model.
    • 83  Vercelli A, Mereuta OM, Garbossa D et al.: Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis.31,395–405 (2008).▪▪ Demonstrates the positive effects of MSCs in an in vivo ALS model.
    • 84  Morita E, Watanabe Y, Ishimoto M et al.: A novel cell transplantation protocol and its application to an ALS mouse model. Exp. Neurol.213,431–438 (2008).
    • 85  Fischer LR, Culver DG, Tennant P et al.: Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol.185,232–240 (2004).
    • 86  Klein SM, Behrstock S, McHugh J et al.: GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum. Gene Ther.16,509–521 (2005).
    • 87  Suzuki M, McHugh J, Tork C et al.: GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS ONE2,e689 (2007).▪▪ Human GDNF-expressing MSCs had significant effects on ameliorating ALS symptoms.
    • 88  Suzuki M, McHugh J, Tork C et al.: Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol. Ther.16,2002–2010 (2008).
    • 89  Funakoshi H, Ohya W, Kadoyama K et al.: [ALS and neurotrophic factors – HGF as a novel neurotrophic and neuroregenerative factor]. Brain Nerve59,1195–1202 (2007).
    • 90  Kadoyama K, Funakoshi H, Ohya W et al.: Hepatocyte growth factor (HGF) attenuates gliosis and motoneuronal degeneration in the brainstem motor nuclei of a transgenic mouse model of ALS. Neurosci. Res.59,446–456 (2007).
    • 91  Donsante A, Miller DG, Li Y et al.: AAV vector integration sites in mouse hepatocellular carcinoma. Science317,477 (2007).
    • 92  Nagano I, Ilieva H, Shiote M et al.: Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of amyotrophic lateral sclerosis. J. Neurol. Sci.235,61–68 (2005).
    • 93  Nagano I, Shiote M, Murakami T et al.: Beneficial effects of intrathecal IGF-1 administration in patients with amyotrophic lateral sclerosis. Neurosci. Res.27,768–772 (2005).
    • 94  Mazzini L, Ferrero I, Luparello V et al.: Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol.223(1),229–237 (2009).▪▪ MSCs were safely infused into the CNS of ten ALS patients in a Phase I clinical trial.
    • 95  Greene P: Cell-based therapies in Parkinson’s disease. Curr. Neurol. Neurosci. Rep.9,292–297 (2009).
    • 96  Jenner P: Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann. Neurol.64(Suppl. 2),S16–S29 (2008).
    • 97  Jin GZ, Cho SJ, Choi EG et al.: Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol. Int.32,1433–1438 (2008).
    • 98  Bouchez G, Sensebe L, Vourc’h P et al.: Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem. Int.52,1332–1342 (2008).
    • 99  Sadan O, Bahat-Stromza M, Barhum Y et al.: Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev.18,1179–1190 (2009).
    • 100  Peterson AL, Nutt JG: Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics5,270–280 (2008).
    • 101  Manfredsson FP, Okun MS, Mandel RJ: Gene therapy for neurological disorders: challenges and future prospects for the use of growth factors for the treatment of Parkinson’s disease. Curr. Gene Ther.9,375–388 (2009).
    • 102  Ramaswamy S, Soderstrom KE, Kordower JH: Trophic factors therapy in Parkinson’s disease. Prog. Brain Res.175,201–216 (2009).
    • 103  Li JY, Englund E, Holton JL et al.: Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med.14,501–503 (2008).
    • 104  Mazzini L, Fagioli F, Boccaletti R et al.: Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord.4,158–161 (2003).
    • 105  Karussis D, Kassis I, Kurkalli BG et al.: Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J. Neurol. Sci.265,131–135 (2008).
    • 106  Mancardi G, Saccardi R: Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol.7,626–636 (2008).
    • 107  Saccardi R, Kozak T, Bocelli-Tyndall C et al.: Autologous stem cell transplantation for progressive multiple sclerosis: update of the European group for blood and marrow transplantation autoimmune diseases working party database. Mult. Scler.12,814–823 (2006).
    • 108  Shevchenko YL, Novik AA, Kuznetsov AN et al.: High-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation as a treatment option in multiple sclerosis. Exp. Hematol.36,922–928 (2008).
    • 109  Atkins H, Freedman M: Immune ablation followed by autologous hematopoietic stem cell transplantation for the treatment of poor prognosis multiple sclerosis. Methods Mol. Biol.549,231–246 (2009).
    • 110  Burt RK, Loh Y, Cohen B et al.: Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing–remitting multiple sclerosis: a Phase I/II study. Lancet Neurol.8,244–253 (2009).
    • 111  Rogojan C, Frederiksen JL: Hematopoietic stem cell transplantation in multiple sclerosis. Acta Neurol. Scand.120,371–382 (2009).
    • 112  Bonab MM, Yazdanbakhsh S, Lofti J: Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J. Immunol.4,50–57 (2007).
    • 113  Liang J, Zhang H, Hua B et al.: Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult. Scler.15,644–646 (2009).
    • 114  Zhang ZX, Guan LX, Zhang K et al.: A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy10,134–139 (2008).
    • 115  Ting AE, Mays RW, Frey MR et al.: Therapeutic pathways of adult stem cell repair. Crit. Rev. Oncol. Hematol.65,81–93 (2008).
    • 116  Mays RW, van’t Hof W, Ting AE et al.: Development of adult pluripotent stem cell therapies for ischemic injury and disease. Expert Opin. Biol. Ther.7,173–184 (2007).
    • 117  Hare JM, Traverse JH, Henry TD et al.: A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol.54,2277–2286 (2009).
    • 118  Newman RE, Yoo D, LeRoux MA et al.: Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm. Allergy Drug Targets8,110–123 (2009).
    • 119  Dryden GW: Overview of stem cell therapy for Crohn’s disease. Expert Opin. Biol. Ther.9,841–847 (2009).
    • 201  Karussis D: “multiple sclerosis AND stem cell”. ClinicalTrials.gov. A service of the US National Institutes of Health 2010 http://clinicaltrials.gov/ct2/show/NCT00781872
    • 202  ClinicalTrials.gov. A service of the US National Institutes of Health. “multiple sclerosis AND stem cell”. 1 June 2010 http://clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cells+multiple+sclerosis+
    • 203  Clinical Trials http://clinicaltrials.gov