We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Skeletal myoblasts for cardiac repair

    Shazia Durrani

    Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA

    ,
    Mikhail Konoplyannikov

    Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA

    ,
    Muhammad Ashraf

    Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA

    &
    Published Online:https://doi.org/10.2217/rme.10.65

    Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed.

    Papers of special note have been highlighted as: of interest ▪▪ of considerable interest

    Bibliography

    • Cleland JG, McGowan J: Heart failure due to ischaemic heart disease: epidemiology, pathophysiology and progression. J. Cardiovasc. Pharmacol.33(Suppl. 3),S17–S29 (1999).
    • Frangogiannis NG: The immune system and cardiac repair. Pharmacol. Res.58,88–111 (2008).
    • Haqqani HM, Mond HG: The implantable cardioverter-defibrillator lead: principles, progress, and promises. Pacing Clin. Electrophysiol.32,1336–1353 (2009).
    • Alba AC, Delgado DH: The future is here: ventricular assist devices for the failing heart. Expert Rev. Cardiovasc. Ther.7,1067–1077 (2009).
    • Soonpaa MH, Field LJ: Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am. J. Physiol.272,H220–H226 (1997).
    • Rubart M, Field LJ: Cardiac regeneration: repopulating the heart. Annu. Rev. Physiol.68,29–49 (2006).▪ Critical review of heart cell therapy.
    • Bergmann O, Bhardwaj RD, Bernard S et al.: Evidence for cardiomyocyte renewal in humans. Science324,98–102 (2009).▪▪ Excellent study demonstrating cardiomyocyte renewal in the postnatal heart.
    • Hassink RJ, Pasumarthi KB, Nakajima H et al.: Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc. Res.78,18–25 (2008).
    • Anversa P, Leri A, Kajstura J, Nadal-Ginard B: Myocyte growth and cardiac repair. J. Mol. Cell Cardiol.34,91–105 (2002).▪ Discusses the potential of cardiomyocytes to replicate in the postnatal heart.
    • 10  Nadal-Ginard B, Kajstura J, Leri A, Anversa P: Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ. Res.92,139–150 (2003).
    • 11  Anversa P, Kajstura J, Leri A, Bolli R: Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation113,1451–1463 (2006).▪ Discusses the inherent capacity of the mammalian heart for self-renewal.
    • 12  Beltrami AP, Barlucchi L, Torella D et al.: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114,763–776 (2003).
    • 13  Anversa P, Leri A, Kajstura J: Cardiac regeneration. J. Am. Coll. Cardiol.47,1769–1776 (2006).
    • 14  Bearzi C, Leri A, Lo Monaco F et al.: Identification of a coronary vascular progenitor cell in the human heart. Proc. Natl Acad. Sci. USA106(37),15885–15890 (2009).
    • 15  Rota M, Padin-Iruegas ME, Misao Y et al.: Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ. Res.103,107–116 (2008).
    • 16  Dawn B, Stein AB, Urbanek K et al.: Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl Acad. Sci. USA102,3766–3771 (2005).
    • 17  Matsuura K, Honda A, Nagai T et al.: Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J. Clin. Invest.119,2204–2217 (2009).
    • 18  Leri A, Hosoda T, Rota M, Kajstura J, Anversa P: Myocardial regeneration by exogenous and endogenous progenitor cells. Drug Discov. Today Dis. Mech.4,197–203 (2007).
    • 19  Kajstura J, Rota M, Whang B et al.: Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res.96,127–137 (2005).
    • 20  Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P: Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. NY Acad. Sci.938,221–229 (2001).
    • 21  Kudo M, Wang Y, Wani MA et al.: Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. J. Mol. Cell Cardiol.35,1113–1119 (2003).▪ Provides evidence that bone marrow stem cells differentiate to adopt cardiac phenotype.
    • 22  Haider H, Ye L, Jiang S et al.: Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor. J. Mol. Med.82,539–549 (2004).▪▪ Large animal study showing the effectiveness of skeletal myoblast (SM)-based angiogenic gene therapy of the infarcted heart.
    • 23  Nelson TJ, Martinez-Fernandez A, Yamada S et al.: Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation120,408–416 (2009).
    • 24  Siu CW, Moore JC, Li RA: Human embryonic stem cell-derived cardiomyocytes for heart therapies. Cardiovasc. Hematol. Disord. Drug Targets7,145–152 (2007).
    • 25  Crisostomo PR, Abarbanell AM, Wang M et al.: Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. Am. J. Physiol. Heart Circ. Physiol.295,H1726–H1735 (2008).
    • 26  Martinez-Fernandez A, Nelson TJ, Yamada S et al.: iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ. Res.105,648–656 (2009).
    • 27  Halbach M, Pfannkuche K, Pillekamp F et al.: Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation. Circ. Res.101,484–492 (2007).
    • 28  Ye L, Haider H, Jiang S et al.: Reversal of myocardial injury using genetically modulated human skeletal myoblasts in a rodent cryoinjured heart model. Eur. J. Heart Fail.7,945–952 (2005).▪ Small animal cryoinjury model to show cardiac reparability of SMs.
    • 29  Menasche P, Alfieri O, Janssens S et al.: The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation117,1189–1200 (2008).▪▪ First randomized, placebo-controlled study using SMs in humans.
    • 30  Ye L, Haider H, Tan R et al.: Angiomyogenesis using liposome based vascular endothelial growth factor-165 transfection with skeletal myoblast for cardiac repair. Biomaterials29,2125–2137 (2008).▪ Nonviral angiogenic gene modification of SMs for myocardial repair.
    • 31  Ye L, Haider H, Tan R et al.: Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation116,I113–I120 (2007).
    • 32  Khan M, Kutala VK, Vikram DS et al.: Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. Am. J. Physiol. Heart Circ. Physiol.293,H2129–H2139 (2007).
    • 33  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126,663–676 (2006).
    • 34  Yamanaka S: Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell21,39–49 (2007).▪ Summary of the role of transcription factors and chromatin remodeling during reprogramming.
    • 35  Freund C, Mummery CL: Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J. Cell Biochem.107,592–599 (2009).
    • 36  Mauritz C, Schwanke K, Reppel M et al.: Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation118,507–517 (2008).
    • 37  Mias C, Lairez O, Trouche E et al.: Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells27(11),2734–2743 (2009).
    • 38  Schuleri KH, Feigenbaum GS, Centola M et al.: Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur. Heart J.30(22),2722–2732 (2009).
    • 39  Hoashi T, Matsumiya G, Miyagawa S et al.: Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J. Thorac. Cardiovasc. Surg.138,460–467 (2009).
    • 40  Ghostine S, Carrion C, Souza LC et al.: Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation106,I131–I136 (2002).▪ Long-term effectiveness of SM therapy.
    • 41  Gavira JJ, Herreros J, Perez A et al.: Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J. Thorac. Cardiovasc. Surg.131,799–804 (2006).
    • 42  Ince H, Petzsch M, Rehders TC et al.: Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J. Endovasc. Ther.11,695–704 (2004).
    • 43  Menasche P: Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis.50,7–17 (2007).
    • 44  Haider H, Tan AC, Aziz S, Chachques JC, Sim EK: Myoblast transplantation for cardiac repair: a clinical perspective. Mol. Ther.9,14–23 (2004).▪ Review of the clinical studies involving SM transplantation.
    • 45  Al Attar N, Carrion C, Ghostine S et al.: Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. Cardiovasc. Res.58,142–148 (2003).
    • 46  Taylor DA, Atkins BZ, Hungspreugs P et al.: Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med.4,929–933 (1998).
    • 47  McCue JD, Swingen C, Feldberg T et al.: The real estate of myoblast cardiac transplantation: negative remodeling is associated with location. J. Heart Lung Transplant27,116–123 (2008).
    • 48  Brasselet C, Morichetti MC, Messas E et al.: Skeletal myoblast transplantation through a catheter-based coronary sinus approach: an effective means of improving function of infarcted myocardium. Eur. Heart J.26,1551–1556 (2005).
    • 49  Hata H, Matsumiya G, Miyagawa S et al.: Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J. Thorac. Cardiovasc. Surg.132,918–924 (2006).
    • 50  He KL, Yi GH, Sherman W et al.: Autologous skeletal myoblast transplantation improved hemodynamics and left ventricular function in chronic heart failure dogs. J. Heart Lung Transplant.24,1940–1949 (2005).
    • 51  Ye L, Haider H, Jiang S et al.: Improved angiogenic response in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF165 and angiopoietin-1. Eur. J. Heart Fail.9,15–22 (2007).
    • 52  Chazaud B, Hittinger L, Sonnet C et al.: Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovasc. Res.58,444–450 (2003).
    • 53  Zhang Z, van den Bos EJ, Wielopolski PA et al.: High-resolution magnetic resonance imaging of iron-labeled myoblasts using a standard 1.5-T clinical scanner. MAGMA17,201–209 (2004).
    • 54  Atkins BZ, Hueman MT, Meuchel J et al.: Cellular cardiomyoplasty improves diastolic properties of injured heart. J. Surg. Res.85,234–242 (1999).
    • 55  Marelli D, Desrosiers C, el-Alfy M, Kao RL, Chiu RC: Cell transplantation for myocardial repair: an experimental approach. Cell Transplant.1,383–390 (1992).
    • 56  Reinecke H, Murry CE: Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing? Cardiovasc. Pathol.9,337–344 (2000).
    • 57  Murry CE, Wiseman RW, Schwartz SM, Hauschka SD: Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest.98,2512–2523 (1996).
    • 58  Reinecke H, MacDonald GH, Hauschka SD, Murry CE: Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J. Cell Biol.149,731–740 (2000).
    • 59  Peterson JM, Pizza FX: Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J. Appl. Physiol.106,130–137 (2009).
    • 60  Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE: Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol. Biol. Cell13,2909–2918 (2002).
    • 61  Pouzet B, Ghostine S, Vilquin JT et al.: Is skeletal myoblast transplantation clinically relevant in the era of angiotensin-converting enzyme inhibitors? Circulation104,I223–I228 (2001).▪ Small animal study supporting clinical relevance of SM therapy for myocardial repair.
    • 62  Elmadbouh I, Haider H, Jiang S, Idris NM, Lu G, Ashraf M: Ex vivo delivered stromal cell-derived factor-1α promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J. Mol. Cell Cardiol.42,792–803 (2007).
    • 63  Murtuza B, Suzuki K, Bou-Gharios G et al.: Transplantation of skeletal myoblasts secreting an IL-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proc. Natl Acad. Sci. USA101,4216–4221 (2004).
    • 64  Suzuki K, Murtuza B, Smolenski RT et al.: Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation104,I207–I212 (2001).▪ SM-based angiomyogenic repair of the heart.
    • 65  Aharinejad S, Abraham D, Paulus P et al.: Colony-stimulating factor-1 transfection of myoblasts improves the repair of failing myocardium following autologous myoblast transplantation. Cardiovasc. Res.79,395–404 (2008).
    • 66  Toh R, Kawashima S, Kawai M et al.: Transplantation of cardiotrophin-1-expressing myoblasts to the left ventricular wall alleviates the transition from compensatory hypertrophy to congestive heart failure in Dahl salt-sensitive hypertensive rats. J. Am. Coll. Cardiol.43,2337–2347 (2004).
    • 67  Formigli L, Francini F, Nistri S et al.: Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. J. Mol. Cell. Cardiol.47,335–345 (2009).
    • 68  Bonacchi M, Nistri S, Nanni C et al.: Functional and histopathological improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy. J. Cell Mol. Med.13,3437–3448 (2009).
    • 69  Kim CK, Haider KH, Lim SJ: Gene medicine: a new field of molecular medicine. Arch Pharm Res.24,1–15 (2001).
    • 70  Ye L, Haider HK, Esa WB et al.: Liposome based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischemic limb disease. J. Cell Mol. Med.14(1–2),323–336 (2010).
    • 71  Chanseaume S, Azarnoush K, Maurel A et al.: Can erythropoietin improve skeletal myoblast engraftment in infarcted myocardium? Interact. Cardiovasc. Thorac. Surg.6,293–297 (2007).
    • 72  Lafreniere JF, Mills P, Tremblay JP, El Fahime E: Growth factors improve the in vivo migration of human skeletal myoblasts by modulating their endogenous proteolytic activity. Transplantation77,1741–1747 (2004).
    • 73  Kim HW, Haider HK, Jiang S, Ashraf M: Ischemic preconditioning augments survival of stem cells via MIR-210 expression by targeting caspase-8 associated protein 2. J. Biol. Chem.284(48),33161–33168 (2009).▪▪ First study to extrapolate the concept of ischemic preconditioning to promote donor cell survival with a mechanistic participation of miRNA-210.
    • 74  Niagara MI, Haider H, Jiang S, Ashraf M: Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ. Res.100,545–555 (2007).▪ First study to use preconditioning mimetic diazoxide to enhance SM survival in the infarcted heart.
    • 75  Ott HC, Kroess R, Bonaros N et al.: Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation. Eur. J. Cardiothorac. Surg.27,1017–1021 (2005).
    • 76  Menasche P, Hagege AA, Scorsin M et al.: Myoblast transplantation for heart failure. Lancet357,279–280 (2001).▪▪ First-in-man use of SMs for cardiac repair.
    • 77  Hagege AA, Carrion C, Menasche P et al.: Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet361,491–492 (2003).▪▪ First direct evidence from human heart that transplanted SMs differentiated into myofibers in the infarcted heart.
    • 78  Menasche P, Hagege AA, Vilquin JT et al.: Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41,1078–1083 (2003).
    • 79  Pagani FD, DerSimonian H, Zawadzka A et al.: Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol.41,879–888 (2003).▪ First human study involving SM transplantation as an adjunct to left ventricle assist device implantation.
    • 80  Dib N, McCarthy P, Campbell A et al.: Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant.14,11–19 (2005).
    • 81  Herreros J, Prosper F, Perez A et al.: Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur. Heart J.24,2012–2020 (2003).
    • 82  Siminiak T, Kalawski R, Fiszer D et al.: Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am. Heart J.148,531–537 (2004).
    • 83  Dib N, Campbell A, Jacoby DB et al.: Safety and feasibility of percutaneous autologous skeletal myoblast transplantation in the coil-infarcted swine myocardium. J. Pharmacol. Toxicol. Methods54,71–77 (2006).
    • 84  Siminiak T, Fiszer D, Jerzykowska O et al.: Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur. Heart J.26,1188–1195 (2005).
    • 85  Dib N, Dinsmore J, Lababidi Z et al.: One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc. Interv.2,9–16 (2009).
    • 86  Larose E, Proulx G, Voisine P et al.: Percutaneous versus surgical delivery of autologous myoblasts after chronic myocardial infarction: an in vivo cardiovascular magnetic resonance study. Catheter. Cardiovasc. Interv.75,120–127 (2010).
    • 87  Smits PC, van Geuns RJ, Poldermans D et al.: Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol.42,2063–2069 (2003).
    • 88  Chachques JC, Herreros J, Trainini J et al.: Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int. J. Cardiol.95(Suppl. 1),S29–S33 (2004).▪ First study demonstrating the advantage of using autologous serum to support SM culture.
    • 89  Ferreira-Cornwell MC, Luo Y, Narula N, Lenox JM, Lieberman M, Radice GL: Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J. Cell Sci.115,1623–1634 (2002).
    • 90  Formigli L, Francini F, Tani A et al.: Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell–cell contacts and relaxin treatment. Am. J. Physiol. Cell Physiol.288,C795–C804 (2008).
    • 91  Suzuki K, Brand NJ, Allen S et al.: Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J. Thorac. Cardiovasc. Surg.122,759–766 (2001).
    • 92  Roell W, Lewalter T, Sasse P et al.: Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature450,819–824 (2007).
    • 93  Fernandes S, van Rijen HV, Forest V et al.: Cardiac cell therapy: overexpression of connexin 43 in skeletal myoblasts and prevention of ventricular arrhythmias. J. Cell Mol. Med.13(9B),3703–3712 (2009).
    • 94  Garcia J, Tanabe T, Beam KG: Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J. Gen. Physiol.103,125–147 (1994).
    • 95  Abraham MR, Hare JM: Is skeletal myoblast transplantation proarrhythmic? The jury is still out. Heart Rhythm3,462–463 (2006).
    • 96  Fouts K, Fernandes B, Mal N, Liu J, Laurita KR: Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm3,452–461 (2006).▪▪ Electrophysiological consequences of SM transplantation.
    • 97  Eisen HJ: Skeletal myoblast transplantation: no MAGIC bullet for ischemic cardiomyopathy. Nat. Clin. Pract. Cardiovasc. Med.5,520–521 (2008).
    • 98  Suzuki K, Murtuza B, Beauchamp JR et al.: Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J.18,1153–1155 (2004).
    • 99  Haider H, Ashraf M: Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J. Mol. Cell Cardiol.45,554–566 (2008).▪ Review of various preconditioning approaches to promote stem cell survival.
    • 100  Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M: Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc. Res.77,134–142 (2008).
    • 101  El Fahime E, Bouchentouf M, Benabdallah BF et al.: Tubulyzine, a novel tri-substituted triazine, prevents the early cell death of transplanted myogenic cells and improves transplantation success. Biochem. Cell Biol.81,81–90 (2003).
    • 102  Jiang S, Kh Haider H, Ahmed RP, Idris NM, Salim A, Ashraf M: Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J. Mol. Cell Cardiol.44,582–596 (2008).
    • 103  Kan CD, Li SH, Weisel RD, Zhang S, Li RK: Recipient age determines the cardiac functional improvement achieved by skeletal myoblast transplantation. J. Am. Coll. Cardiol.50,1086–1092 (2007).
    • 104  Haider H, Jiang SJ, Ye L, Aziz S, Law PK, Sim EK: Effectiveness of transient immunosuppression using cyclosporine for xenomyoblast transplantation for cardiac repair. Transplant Proc.36,232–235 (2004).▪▪ First study to show the immunoprivileged status of SMs after transplantation into the infarcted myocardium.
    • 105  Law PK, Fang G, Chua F, Kakuchaya T, Bockeria LA: First-in-man myoblast allografts for heart degeneration. Int. J. Med. Implants Devices1,100–155 (2003).
    • 106  Conboy IM, Conboy MJ, Smythe GM, Rando TA: Notch-mediated restoration of regenerative potential to aged muscle. Science302,1575–1577 (2003).
    • 107  Chen JF, Mandel EM, Thomson JM et al.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet.38,228–233 (2006).
    • 108  Foshay KM, Gallicano GI: Small RNAs, big potential: the role of microRNAs in stem cell function. Curr. Stem Cell Res. Ther.2,264–271 (2007).
    • 109  Hime GR, Somers WG: Micro-RNA mediated regulation of proliferation, self-renewal and differentiation of mammalian stem cells. Cell Adh. Migr.3(4),425–432 (2009).
    • 110  Callis TE, Chen JF, Wang DZ: MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol.26,219–225 (2007).
    • 111  Chen JF, Callis TE, Wang DZ: MicroRNAs and muscle disorders. J. Cell Sci.122,13–20 (2009).
    • 112  Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A: Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol.174,677–687 (2006).
    • 113  Anderson C, Catoe H, Werner R: MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res.34,5863–5871 (2006).
    • 114  Pouzet B, Vilquin JT, Hagege AA et al.: Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation102,III210–III215 (2000).
    • 115  Fukushima S, Coppen SR, Lee J et al.: Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS ONE3,e3071 (2008).▪ Demonstrates the effect of route of administration on the outcome of SM-based therapy.
    • 116  Skuk D, Goulet M, Tremblay JP: Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant.15,659–663 (2006).
    • 117  Suzuki K, Murtuza B, Fukushima S et al.: Targeted cell delivery into infarcted rat hearts by retrograde intracoronary infusion: distribution, dynamics, and influence on cardiac function. Circulation110,II225–II230 (2004).
    • 118  Suzuki K, Brand NJ, Smolenski RT, Jayakumar J, Murtuza B, Yacoub MH: Development of a novel method for cell transplantation through the coronary artery. Circulation102,III359–III364 (2000).
    • 119  Perin EC, Dohmann HF, Borojevic R et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation107,2294–2302 (2003).
    • 120  Gavira JJ, Perez-Ilzarbe M, Abizanda G et al.: A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovasc. Res.71,744–753 (2006).
    • 121  Gavira JJ, Nasarre E, Abizanda G et al.: Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur. Heart J.31(8),1013–1021 (2009).
    • 122  Premaratne GU, Tambara K, Fujita M et al.: Repeated implantation is a more effective cell delivery method in skeletal myoblast transplantation for rat myocardial infarction. Circ. J.70,1184–1189 (2006).
    • 123  Martens TP, Godier AF, Parks JJ et al.: Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant.18,297–304 (2009).
    • 124  Hamdi H, Furuta A, Bellamy V et al.: Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann. Thorac. Surg.87,1196–1203 (2009).
    • 125  Giraud MN, Ayuni E, Cook S, Siepe M, Carrel TP, Tevaearai HT: Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif. Organs32,692–700 (2008).
    • 126  Sherman W, He KL, Yi GH et al.: Myoblast transfer in ischemic heart failure: effects on rhythm stability. Cell Transplant.18,333–341 (2009).
    • 127  Ye L, Haider H, Sim EK: Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp. Biol. Med. (Maywood)231,8–19 (2006).
    • 128  Lafreniere JF, Caron MC, Skuk D, Goulet M, Cheikh AR, Tremblay JP: Growth factor co-injection improves the migration potential of monkey myogenic precursors without affecting cell transplantation success. Cell Transplant.18(7),719–730 (2009).
    • 129  Mikhail Konoplyannikov M, Jiang S, Ahmed R, Ashraf M, Haider HK: Reversal of ischemic cardiomyopathy using reprogrammed skeletal myoblasts overexpressing multiple therapeutic growth factor genes. Circulation120,S773–S774 (2009).
    • 130  Beauchamp JR, Morgan JE, Pagel CN, Partridge TA: Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol.144,1113–1122 (1999).▪ Demonstrates the dynamics of SM transplantation.
    • 131  Winitsky SO, Gopal TV, Hassanzadeh S et al.: Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol.3,e87 (2005).
    • 132  Okada M, Payne TR, Zheng B et al.: Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. J. Am. Coll. Cardiol.52,1869–1880 (2008).
    • 133  Sim EK, Haider HK, Aziz S, Ooi OC, Law PK: Myoblast transplantation on the beating heart. Int. Surg.90,148–150 (2005).
    • 134  Biagini E, Valgimigli M, Smits PC et al.: Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure. Eur. J. Heart Fail.8,641–648 (2006).