We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Mining the extracellular matrix for tissue engineering applications

    Swati Pradhan

    Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA Biochemistry & Cell Biology, Rice University, Houston, TX 77251-1892, USA

    Center for Translational Cancer Research (CTCR), University of Delaware, Newark, DE 19716, USA

    &
    Published Online:https://doi.org/10.2217/rme.10.61

    Tissue engineering is a rapidly evolving interdisciplinary field that aims to regenerate new tissue to replace damaged tissues or organs. The extracellular matrix (ECM) of animal tissues is a complex mixture of macromolecules that play an essential instructional role in the development of tissues and organs. Therefore, tissue engineering approaches rely on the need to present the correct cues to cells, to guide them to maintain tissue-specific functions. Recent research efforts have allowed us to mine various sequences and motifs, which play key roles in these guidance functions, from the ECM. Small conserved peptide sequences mined from ECM molecules can mimic some of the biological functions of their large parent molecules. In addition, these peptide sequences can be linked to various biomaterial scaffolds that can provide the cells with mechanical support to ensure appropriate cell growth and aid the formation of the correct tissue structure. The tissue engineering field will continue to benefit from the advent of these mined ECM sequences which have two major advantages over recombinant ECM molecules: material consistency and scalability.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Danen EH, Sonnenberg A: Integrins in regulation of tissue development and function. J. Pathol.200(4),471–480 (2003).
    • Rosso F, Giordano A, Barbarisi M, Barbarisi A: From cell–ECM interactions to tissue engineering. J. Cell Physiol.199(2),174–180 (2004).
    • Alberts B: Molecular Biology of the Cell (4th Edition). Garland Science, NY, USA (2002).
    • Labat-Robert J, Bihari-Varga M, Robert L: Extracellular matrix. FEBS Lett.268(2),386–393 (1990).
    • Weber KT, Sun Y, Katwa LC: Local regulation of extracellular matrix structure. Herz.20(2),81–88 (1995).
    • Schonherr E, Hausser HJ: Extracellular matrix and cytokines: a functional unit. Dev. Immunol.7(2–4),89–101 (2000).
    • Parameswaran K, Willems-Widyastuti A, Alagappan VK et al.: Role of extracellular matrix and its regulators in human airway smooth muscle biology. Cell Biochem. Biophys.44(1),139–146 (2006).
    • Pereira AL, Veras SS, Silveira EJ et al.: The role of matrix extracellular proteins and metalloproteinases in head and neck carcinomas: an updated review. Braz. J. Otorhinolaryngol.71(1),81–86 (2005).
    • Breitkreutz D, Mirancea N, Nischt R: Basement membranes in skin: unique matrix structures with diverse functions? Histochem. Cell Biol.132(1),1–10 (2009).
    • 10  Erickson AC, Couchman JR: Still more complexity in mammalian basement membranes. J. Histochem. Cytochem.48(10),1291–1306 (2000).
    • 11  Rowe RG, Weiss SJ: Breaching the basement membrane: who, when and how? Trends Cell Biol.18(11),560–574 (2008).
    • 12  Bronzino JD: Tissue Engineering and Artificial Organs. CRC/Taylor & Francis, FL, USA (2006).
    • 13  Santoro MM, Gaudino G: Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp. Cell Res.304(1),274–286 (2005).
    • 14  Timpl R, Brown JC: Supramolecular assembly of basement membranes. Bioessays18(2),123–132 (1996).
    • 15  Miner JH, Yurchenco PD: Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol.20,255–284 (2004).
    • 16  McKee KK, Harrison D, Capizzi S, Yurchenco PD: Role of laminin terminal globular domains in basement membrane assembly. J. Biol. Chem.282(29),21437–21447 (2007).
    • 17  Aumailley M, Bruckner-Tuderman L, Carter WG et al.: A simplified laminin nomenclature. Matrix Biol.24(5),326–332 (2005).
    • 18  Macdonald PR, Lustig A, Steinmetz MO, Kammerer RA: Laminin chain assembly is regulated by specific coiled-coil interactions. J. Struct. Biol.170(2),398–405 (2010).
    • 19  McKee KK, Capizzi S, Yurchenco PD: Scaffold-forming and adhesive contributions of synthetic laminin-binding proteins to basement membrane assembly. J. Biol. Chem.284(13),8984–8994 (2009).
    • 20  Durbeej M: Laminins. Cell Tissue Res.339(1),259–268 (2010).
    • 21  Tzu J, Marinkovich MP: Bridging structure with function: structural, regulatory, and developmental role of laminins. Int. J. Biochem. Cell Biol.40(2),199–214 (2008).
    • 22  Sugawara K, Tsuruta D, Ishii M, Jones JC, Kobayashi H: Laminin-332 and -511 in skin. Exp. Dermatol.17(6),473–480 (2008).
    • 23  Li S, Liquari P, McKee KK et al.: Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J. Cell Biol.1(1),179–189 (2005).
    • 24  Sasaki T, Gohring W, Mann K et al.: Short arm region of laminin-5 γ2 chain: structure, mechanism of processing and binding to heparin and proteins. J. Mol. Biol.314(4),751–763 (2001).
    • 25  Gordon MK, Hahn RA: Collagens. Cell Tissue Res.339(1),247–257 (2010).
    • 26  Shoulders MD, Raines RT: Collagen structure and stability. Annu. Rev. Biochem.78,929–958 (2009).
    • 27  Khoshnoodi J, Pedchenko V, Hudson BG: Mammalian collagen IV. Microsc. Res. Tech.71(5),357–370 (2008).
    • 28  Battaglia C, Mayer U, Aumailley M, Timpl R: Basement-membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. Eur. J. Biochem.208(2),359–366 (1992).
    • 29  Iozzo RV: Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell Biol.6(8),646–656 (2005).
    • 30  Yurchenco PD, Amenta PS, Patton BL: Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol.22(7),521–538 (2004).
    • 31  Hallmann R, Horn N, Selg M et al.: Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev.85(3),979–1000 (2005).
    • 32  Davis GE, Senger DR: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res.97(11),1093–1107 (2005).
    • 33  Miner JH, Patton BL, Lentz SI et al.: The laminin α-chains: expression, developmental transitions, and chromosomal locations of α1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel α3 isoform. J. Cell Biol.137(3),685–701 (1997).
    • 34  Thyboll J, Kortesmaa J, Cao R et al.: Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol. Cell Biol.22(4),1194–1202 (2002).
    • 35  Miner JH, Cunningham J, Sanes JR: Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin α5 chain. J. Cell Biol.143(6),1713–1723 (1998).
    • 36  Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP, Yurchenco PD: Self-assembly of laminin isoforms. J. Biol. Chem.272(50),31525–31532 (1997).
    • 37  Kalluri R: Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer3(6),422–433 (2003).
    • 38  Chen L, Miyamura N, Ninomiya Y, Handa JT: Distribution of the collagen IV isoforms in human Bruch’s membrane. Br. J. Ophthalmol.87(2),212–215 (2003).
    • 39  Poschl E, Schlotzer-Schrehardt U, Brachvogel B et al.: Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development131(7),1619–1628 (2004).
    • 40  Costell M, Gustafsson E, Aszodi A et al.: Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol.147(5),1109–1122 (1999).
    • 41  Bix G, Fu J, Gonzalez EM et al.: Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin. J. Cell Biol.166(1),97–109 (2004).
    • 42  Ruegg C, Hasmim M, Lejeune FJ, Alghisi GC: Antiangiogenic peptides and proteins: from experimental tools to clinical drugs. Biochim. Biophys. Acta1765(2),155–177 (2006).
    • 43  Bix G, Iozzo RA, Woodall B et al.: Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the α2β1-integrin receptor. Blood109(9),3745–3748 (2007).
    • 44  Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV: Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem.278(6),4238–4249 (2003).
    • 45  Bix G, Castello R, Burrows M et al.: Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metabolism. J. Natl Cancer Inst.98(22),1634–1646 (2006).
    • 46  O’Reilly MS, Holmgren L, Chen C, Folkman J: Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med.2(6),689–692 (1996).▪▪ First demonstration of dormancy of metastases induced by administration of angiostatin.
    • 47  Rehn M, Pihlajaniemi T: α1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc. Natl Acad. Sci. USA91(10),4234–4238 (1994).
    • 48  Ma DH, Chen JK, Zhang F et al.: Regulation of corneal angiogenesis in limbal stem cell deficiency. Prog. Retin. Eye Res.25(6),563–590 (2006).
    • 49  Hamilton R, Campbell FR: Immunochemical localization of extracellular materials in bone marrow of rats. Anat. Rec.231(2),218–224 (1991).
    • 50  Gordon MY: Extracellular matrix of the marrow microenvironment. Br. J. Haematol.70(1),1–4 (1988).
    • 51  Djouad F, Bouffi C, Ghannam S, Noel D, Jorgensen C: Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat. Rev. Rheumatol.5(7),392–399 (2009).
    • 52  Roelen BA, Dijke P: Controlling mesenchymal stem cell differentiation by TGF-β family members. J. Orthop. Sci.8(5),740–748 (2003).
    • 53  Kohane DS, Langer R: Polymeric biomaterials in tissue engineering. Pediatr. Res.63(5),487–491 (2008).▪▪ Discusses various biomaterials for use in tissue engineering, including injectible systems, drug-delivery, surface-modified polymers and 3D matrices.
    • 54  Baroli B: Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci.96(9),2197–2223 (2007).
    • 55  Kretlow JD, Klouda L, Mikos AG: Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev.59(4–5),263–273 (2007).
    • 56  Chung HJ, Park TG: Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv. Drug Deliv. Rev.59(4–5),249–262 (2007).
    • 57  Kohane DS, Tse JY, Yeo Y et al.: Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J. Biomed. Mater. Res. A77(2),351–361 (2006).
    • 58  Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF: Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules (2009) (Epub ahead of print).
    • 59  Ruoslahti E, Pierschbacher MD: New perspectives in cell adhesion: RGD and integrins. Science238(4826),491–497 (1987).
    • 60  Yamada KM, Kennedy DW: Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol.99(1 Pt 1),29–36 (1984).
    • 61  Gartner TK, Bennett JS: The tetrapeptide analogue of the cell attachment site of fibronectin inhibits platelet aggregation and fibrinogen binding to activated platelets. J. Biol. Chem.260(22),11891–11894 (1985).
    • 62  Ginsberg M, Pierschbacher MD, Ruoslahti E, Marguerie G, Plow E: Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J. Biol. Chem.260(7),3931–3936 (1985).
    • 63  Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie GA, Ginsberg MH: The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc. Natl Acad. Sci. USA82(23),8057–8061 (1985).
    • 64  Plow EF, McEver RP, Coller BS et al.: Related binding mechanisms for fibrinogen, fibronectin, von Willebrand factor, and thrombospondin on thrombin-stimulated human platelets. Blood66(3),724–727 (1985).
    • 65  Hayman EG, Pierschbacher MD, Suzuki S, Ruoslahti E: Vitronectin – a major cell attachment-promoting protein in fetal bovine serum. Exp. Cell Res.160(2),245–258 (1985).
    • 66  Gardner JM, Hynes RO: Interaction of fibronectin with its receptor on platelets. Cell42(2),439–448 (1985).
    • 67  Barczyk M, Carracedo S, Gullberg D: Integrins. Cell Tissue Res.339(1),2–80 (2010).
    • 68  Pytela R, Suzuki S, Breuss J, Erle DJ, Sheppard D: Polymerase chain reaction cloning with degenerate primers: homology-based identification of adhesion molecules. Methods Enzymol.245,420–451 (1994).
    • 69  Pytela R, Pierschbacher MD, Ruoslahti E: A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc. Natl Acad. Sci. USA82(17),5766–5770 (1985).
    • 70  Pytela R, Pierschbacher MD, Ruoslahti E: Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell40(1),191–198 (1985).
    • 71  Ruoslahti E: RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol.12,697–715 (1996).
    • 72  Bajt ML, Ginsberg MH, Frelinger AL 3rd, Berndt MC, Loftus JC: A spontaneous mutation of integrin αIIb β3 (platelet glycoprotein IIb–IIIa) helps define a ligand binding site. J. Biol. Chem.267(6),3789–3794 (1992).
    • 73  Bajt ML, Loftus JC: Mutation of a ligand binding domain of β3 integrin. Integral role of oxygenated residues in αIIb β3 (GPIIb-IIIa) receptor function. J. Biol. Chem.2(33),20913–20919 (1994).
    • 74  Smith JW, Cheresh DA: The Arg-Gly-Asp binding domain of the vitronectin receptor. Photoaffinity cross-linking implicates amino acid residues 61–203 of the β subunit. J. Biol. Chem.263(35),18726–18731 (1988).
    • 75  Davis GE, Bayless KJ, Davis MJ, Meininger GA: Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol.156(5),1489–1498 (2000).
    • 76  Huveneers S, Truong H, Fassler R, Sonnenberg A, Danen EH: Binding of soluble fibronectin to integrin α5β1 – link to focal adhesion redistribution and contractile shape. J. Cell Sci.121(Pt 15),2452–2462 (2008).
    • 77  Mintz KP, Grzesik WJ, Midura RJ et al.: Purification and fragmentation of nondenatured bone sialoprotein: evidence for a cryptic, RGD-resistant cell attachment domain. J. Bone Miner. Res.8(8),985–995 (1993).
    • 78  Davis GE: Matricryptic sites control tissue injury responses in the cardiovascular system: relationships to pattern recognition receptor regulated events. J. Mol. Cell Cardiol.48(3),454–460 (2010).
    • 79  Lotz MM, Burdsal CA, Erickson HP, McClay DR: Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J. Cell Biol.109(4 Pt 1),1795–1805 (1989).
    • 80  Shin H, Temenoff JS, Bowden GC et al.: Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and β-glycerol phosphate. Biomaterials26(17),3645–3654 (2005).
    • 81  Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG: Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. J. Biomed. Mater. Res. A (3),535–543 (2004).
    • 82  Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG: Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials25(5),895–906 (2004).
    • 83  Iwamoto Y, Robey FA, Graf J et al.: YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science238(4830),1132–1134 (1987).
    • 84  Bushkin-Harav I, Littauer UZ: Involvement of the YIGSR sequence of laminin in protein tyrosine phosphorylation. FEBS Lett.424(3),243–247 (1998).
    • 85  Bilozur ME, Hay ED: Neural crest migration in 3D extracellular matrix utilizes laminin, fibronectin, or collagen. Dev. Biol.125(1),19–33 (1988).
    • 86  Hubbell JA, Massia SP, Desai NP, Drumheller PD: Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (NY)9(6),568–572 (1991).
    • 87  Jun HW, West JL: Endothelialization of microporous YIGSR/PEG-modified polyurethaneurea. Tissue Eng.11(7–8),1133–1140 (2005).
    • 88  Graf J, Ogle RC, Robey FA et al.: A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67,000 laminin receptor. Biochemistry26(22),6896–6900 (1987).
    • 89  Castronovo V: Laminin receptors and laminin-binding proteins during tumor invasion and metastasis. Invasion Metastasis13(1),1–30 (1993).
    • 90  Tashiro K, Sephel GC, Weeks B et al.: A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem.264(27),16174–16182 (1989).
    • 91  Sephel GC, Tashiro K, Sasaki M et al.: A laminin-pepsin fragment with cell attachment and neurite outgrowth activity at distinct sites. Dev. Biol.135(1),172–181 (1989).
    • 92  Sephel GC, Tashiro KI, Sasaki M et al.: Laminin A chain synthetic peptide which supports neurite outgrowth. Biochem. Biophys. Res. Commun.162(2),821–829 (1989).
    • 93  Nomizu M, Weeks BS, Weston CA et al.: Structure-activity study of a laminin α-1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV). FEBS Lett.365(2–3),227–231 (1995).
    • 94  Grant DS, Tashiro K, Segui-Real B et al.: Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell58(5),933–943 (1989).
    • 95  Hopker VH, Shewan D, Tessier-Lavigne M, Poo M, Holt C: Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature401(6748),69–73 (1999).
    • 96  Ratcliffe EM, D’Autreaux F, Gershon MD: Laminin terminates the Netrin/DCC mediated attraction of vagal sensory axons. Dev. Neurobiol.68(7),960–971 (2008).
    • 97  Reyes CD, Garcia AJ: Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. J. Biomed. Mater. Res. A65(4),511–523 (2003).
    • 98  Reyes CD, Garcia AJ: α2β1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. J. Biomed. Mater. Res. A (4),591–600 (2004).
    • 99  Wojtowicz AM, Shekaran A, Oest ME et al.: Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials31(9),2574–2582 (2010).
    • 100  Mizuno M, Fujisawa R, Kuboki Y: Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-α2β1 integrin interaction. J. Cell Physiol.184(2),207–213 (2000).
    • 101  Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH: Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J. Bone Miner. Res.14(7),1075–1083 (1999).
    • 102  Mineur P, Guignandon A, Lambert ChA et al.: RGDS and DGEA-induced [Ca2+]i signalling in human dermal fibroblasts. Biochim. Biophys. Acta1746(1),28–37 (2005).
    • 103  Yamaguchi K, Ura H, Yasoshima T et al.: Establishment and characterization of a human gastric carcinoma cell line that is highly metastatic to lymph nodes. J. Exp. Clin. Cancer Res.19(1),113–120 (2000).
    • 104  Mizuno M, Kuboki Y: Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J. Biochem.129(1),133–138 (2001).
    • 105  McCann TJ, Mason WT, Meikle MC, McDonald F: A collagen peptide motif activates tyrosine kinase-dependent calcium signalling pathways in human osteoblast-like cells. Matrix Biol.16(5),273–283 (1997).
    • 106  Farach-Carson MC, Hecht JT, Carson DD: Heparan sulfate proteoglycans: key players in cartilage biology. Crit. Rev. Eukaryot. Gene Expr.15(1),29–48 (2005).
    • 107  Schofield KP, Gallagher JT, David G: Expression of proteoglycan core proteins in human bone marrow stroma. Biochem. J.343(Pt 3),663–668 (1999).
    • 108  Farach-Carson MC, Brown AJ, Lynam M, Safran JB, Carson DD: A novel peptide sequence in perlecan domain IV supports cell adhesion, spreading and FAK activation. Matrix Biol.27(2),150–160 (2008).▪ Interesting article highlighting the use of bioinformatics-based strategies to mine for novel functional motifs in perlecan/HSPG2.
    • 109  Pradhan S, Zhang C, Jia X et al.: Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro. Tissue Eng. Part A.15(11),3309–3320 (2009).
    • 110  Hartman O, Zhang C, Adams EL et al.: Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials31(21),5700–5718 (2010).
    • 111  Underhill C: CD44: the hyaluronan receptor. J. Cell Sci.103(Pt 2),293–298 (1992).
    • 112  Yang B, Zhang L, Turley EA: Identification of two hyaluronan-binding domains in the hyaluronan receptor RHAMM. J. Biol. Chem.268(12),8617–8623 (1993).
    • 113  Neame PJ, Barry FP: The link proteins. Experientia49(5),393–402 (1993).
    • 114  Watanabe H, Cheung SC, Itano N, Kimata K, Yamada Y: Identification of hyaluronan-binding domains of aggrecan. J. Biol. Chem.272(44),28057–28065 (1997).
    • 115  Zimmermann DR, Ruoslahti E: Multiple domains of the large fibroblast proteoglycan, versican. EMBO J.8(10),2975–2981 (1989).
    • 116  Hofmann M, Fieber C, Assmann V et al.: Identification of IHABP, a 95 kDa intracellular hyaluronate binding protein. J. Cell Sci.111(Pt 12),1673–1684 (1998).
    • 117  Acharya S, Rodriguez IR, Moreira EF et al.: SPACR, a novel interphotoreceptor matrix glycoprotein in human retina that interacts with hyaluronan. J. Biol. Chem.273(47),31599–31606 (1998).
    • 118  Grammatikakis N, Grammatikakis A, Yoneda M et al.: A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J. Biol. Chem.270(27),16198–16205 (1995).
    • 119  Das S, Deb TB, Kumar R, Datta K: Multifunctional activities of human fibroblast 34-kDa hyaluronic acid-binding protein. Gene190(1),223–225 (1997).
    • 120  Acharya S, Foletta VC, Lee JW et al.: SPACRCAN, a novel human interphotoreceptor matrix hyaluronan-binding proteoglycan synthesized by photoreceptors and pinealocytes. J. Biol. Chem.275(10),45–55 (2000).
    • 121  Amemiya K, Nakatani T, Saito A, Suzuki A, Munakata H: Hyaluronan-binding motif identified by panning a random peptide display library. Biochim. Biophys. Acta1724(1–2),94–99 (2005).
    • 122  Yang WD, Gomes RR Jr, Alicknavitch M, Farach-Carson MC, Carson DD: Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds. Tissue Eng.11(1–2),76–89 (2005).
    • 123  Kirn-Safran CB, Gomes RR, Brown AJ, Carson DD: Heparan sulfate proteoglycans: coordinators of multiple signaling pathways during chondrogenesis. Birth Defects Res. C Embryo Today72(1),69–88 (2004).
    • 124  Knox S, Merry C, Stringer S, Melrose J, Whitelock J: Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J. Biol. Chem.277(17),14657–14665 (2002).
    • 125  Jiang X, Couchman JR: Perlecan and tumor angiogenesis. J. Histochem. Cytochem.51(11),1393–1410 (2003).
    • 126  Ruppert R, Hoffmann E, Sebald W: Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur. J. Biochem.237(1),295–302 (1996).
    • 127  Gomes RR Jr, Farach-Carson MC, Carson DD: Perlecan functions in chondrogenesis: insights from in vitro and in vivo models. Cells Tissues Organs176(1–3),79–86 (2004).
    • 128  Gustafsson E, Aszodi A, Ortega N et al.: Role of collagen type II and perlecan in skeletal development. Ann. NY Acad. Sci.995,140–150 (2003).
    • 129  Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y: Perlecan is essential for cartilage and cephalic development. Nat. Genet.23(3),354–358 (1999).
    • 130  Yang W, Gomes RR, Brown AJ et al.: Chondrogenic differentiation on perlecan domain I, collagen II, and bone morphogenetic protein-2-based matrices. Tissue Eng.12(7),2009–2024 (2006).
    • 131  Gotoh Y, Niimi S, Hayakawa T, Miyashita T: Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials25(6),1131–1140 (2004).
    • 132  Gobin AS, West JL: Cell migration through defined, synthetic ECM analogs. FASEB J.16(7),751–753 (2002).
    • 133  Lutolf MP, Hubbell JA: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol.23(1),47–55 (2005).▪▪ Review of biomaterials being developed as extracellular matrix mimetics via incorporation of small peptides and growth factors in 3D model systems.
    • 134  Lutolf MP, Lauer-Fields JL, Schmoekel HG et al.: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA100(9),5413–5418 (2003).▪ Showcases synthetic hydrogels engineered to contain integrin-binding sites, as well as matrix metalloproteinase-sensitive sites.
    • 135  Fischbach C, Mooney DJ: Polymers for pro- and anti-angiogenic therapy. Biomaterials28(12),20–76 (2007).▪ Showcases the polymeric delivery systems for pro- and anti-angiogenic molecules.
    • 136  Goldberg M, Langer R, Jia X: Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed.18(3),241–268 (2007).▪▪ Discusses recent developments in the use of nanostructured materials for tissue engineering and drug delivery applications.
    • 137  Dunehoo AL, Anderson M, Majumdar S et al.: Cell adhesion molecules for targeted drug delivery. J. Pharm. Sci.95(9),1856–1872 (2006).