We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/rme.10.55

Induced pluripotent stem (iPS) cells offer tremendous opportunity for the creation of autologous cellular therapies, in which gene correction or the avoidance of immune response issues are desirable. In addition, iPS cells avoid the ethical concerns raised by the sourcing of human embryonic stem cells (hESCs) from embryos. iPS cells share many characteristics with hESCs and it is anticipated that existing experience with hESCs will translate to rapid progress in moving iPS cell-derived products toward clinical trials. While the potential clinical value for these products is considerable, the nature of current manufacturing paradigms for autologous iPS cell products raises considerable regulatory concerns. Here, the regulatory challenges posed by autologous iPS cell-derived products are examined. We conclude that there will be considerable regulatory concerns primarily relating to reproducibility of the manufacturing process and safety testing within clinically limited time constraints. Demonstrating safety of the final cell product in an autologous setting will be the single greatest obstacle to progressing autologous iPS cell-based therapies into the clinic.

Bibliography

  • Yu J, Thomson JA: Pluripotent stem cell lines. Genes Dev.22(15),1987–1997 (2008).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282(5391),1145–1147 (1998).
  • Murry CE, Keller G: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132(4),661–680 (2008).
  • Crook J, Peura T, Kravets L et al.: The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell1(5),490–494 (2007).
  • Zarzeczny A, Caulfield T: Emerging ethical, legal and social issues associated with stem cell research and the current role of the moral status of the embryo. Stem Cell Rev.5(2),96–101 (2009).
  • Rao M, Condic ML: Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev.17(1),1–10 (2008).
  • Hanna J, Wernig M, Markoulaki S et al.: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318(5858),1920–1923 (2007).
  • Kazuki Y, Hiratsuka M, Takiguchi M et al.: Complete genetic correction of iPS cells from duchenne muscular dystrophy. Mol. Ther.18(2),386–393 (2009).
  • Condic ML, Rao M: Regulatory issues for personalized pluripotent cells. Stem Cells26(11),2753–2758 (2008).
  • 10  Carpenter MK, Frey-Vasconcells J, Rao MS: Developing safe therapies from human pluripotent stem cells. Nat. Biotechnol.27(7),606–613 (2009).
  • 11  Hentze H, Graichen R, Colman A: Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol.25(1),24–32 (2007).
  • 12  Preti RA: Bringing safe and effective cell therapies to the bedside. Nat. Biotechnol.23(7),801–804 (2005).
  • 13  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
  • 14  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
  • 15  Aasen T, Raya A, Barrero MJ et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26(11),1276–1284 (2008).
  • 16  Loh YH, Agarwal S, Park IH et al.: Generation of induced pluripotent stem cells from human blood. Blood113(22),5476–5479 (2009).
  • 17  Lee TH, Song SH, Kim KL et al.: Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ. Res.106(1),120–128 (2010).
  • 18  Sun N, Panetta NJ, Gupta DM et al.: Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl Acad. Sci. USA106(37),15720–15725 (2009).
  • 19  Giorgetti A, Montserrat N, Aasen T et al.: Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell5(4),353–357 (2009).
  • 20  Aoi T, Yae K, Nakagawa M et al.: Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321(5889),699–702 (2008).
  • 21  Eminli S, Foudi A, Stadtfeld M et al.: Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet.41(9),968–976 (2009).
  • 22  Kim JB, Zaehres H, Wu G et al.: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature454(7204),646–650 (2008).
  • 23  Lin T, Ambasudhan R, Yuan X et al.: A chemical platform for improved induction of human iPSCs. Nat. Methods6(11),805–808 (2009).
  • 24  Chin MH, Mason MJ, Xie W et al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5(1),111–123 (2009).
  • 25  Maherali N, Hochedlinger K: Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell3(6),595–605 (2008).
  • 26  Jaenisch R, Young R: Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell132(4),567–582 (2008).
  • 27  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).
  • 28  Hacein-Bey-Abina S, Garrigue A, Wang GP et al.: Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest.118(9),3132–3142 (2008).
  • 29  Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature448(7151),313–317 (2007).
  • 30  Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458(7239),771–775 (2009).
  • 31  Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903),949–953 (2008).
  • 32  Yu J, Hu K, Smuga-Otto K et al.: Human induced pluripotent stem cells free of vector and transgene sequences. Science324(5928),797–801 (2009).
  • 33  Woltjen K, Michael IP, Mohseni P et al.: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239),766–770 (2009).
  • 34  Soldner F, Hockemeyer D, Beard C et al.: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5),964–977 (2009).
  • 35  Zhou H, Wu S, Joo JY et al.: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4(5),381–384 (2009).
  • 36  Kim D, Kim CH, Moon JI et al.: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4(6),472–476 (2009).
  • 37  Brimble SN, Zeng X, Weiler DA et al.: Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev.13(6),585–597 (2004).
  • 38  Draper JS, Smith K, Gokhale P et al.: Recurrent gain of chromosomes 17q and 12 in cultures human embryonic stem cells. Nat. Biotechnol.22(1),53–54 (2004).
  • 39  Rosler ES, Fisk GJ, Ares X et al.: Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn.229(2),259–274 (2004).
  • 40  Blum B, Benvenisty N: The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle8(23),3822–3830 (2009).
  • 41  Doi A, Park IH, Wen B et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet.41(12),1350–1353 (2009).
  • 42  Muller FJ, Laurent LC, Kostka D et al.: Regulatory networks define phenotypic classes of human stem cell lines. Nature455(7211),401–405 (2008).
  • 43  Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR: Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. (2009) (Epub ahead of print).
  • 44  Rao M: Tumorigenesis and embryonic stem cell-derived therapy. Stem Cells Dev.16(6),903–904 (2007).
  • 45  Cooke MJ, Stojkovic M, Przyborski SA: Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev.15(2),254–259 (2006).
  • 46  Shih CC, Forman SJ, Chu P, Slovak M: Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev.16(6),893–902 (2007).
  • 47  Lee AS, Tang C, Cao F et al.: Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle8(16),2608–2612 (2009).
  • 48  Miura K, Okada Y, Aoi T et al.: Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol.27(8),743–745 (2009).
  • 49  Osafune K, Caron L, Borowiak M et al.: Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol.26(3),313–315 (2008).
  • 50  Howe SJ, Mansour MR, Schwarzwaelder K et al.: Insertional mutagenesis combined with acquired somatic mutations caused leukemogenesis following gene therapy in SCID-X1 patients. J. Clin. Invest.118(9),3143–3150 (2008).
  • 101  WiCell Research Institute www.wicell.org