We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cardiac regeneration using human embryonic stem cells: producing cells for future therapy

    Sharon SY Wong

    Cardiovascular Research Institute, University of California, San Francisco, CA 94143-1346 , USA; Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, San Francisco, CA, USA

    &
    Harold S Bernstein

    † Author for correspondence

    Department of Pediatrics, University of California San Francisco, 513 Parnassus Avenue, Box 1346, San Francisco, CA 94143-1346, USA.

    Published Online:https://doi.org/10.2217/rme.10.52

    Directed differentiation of human embryonic stem cells (hESCs) has generated much interest in the field of regenerative medicine. Because of their ability to differentiate into any cell type in the body, hESCs offer a novel therapeutic paradigm for myocardial repair by furnishing a supply of cardiomyocytes (CMs) that would ultimately restore normal myocardial function when delivered to the damaged heart. Spontaneous CM differentiation of hESCs is an inefficient process that yields very low numbers of CMs. In addition, it is not clear that fully differentiated CMs provide the benefits sought from cell transplantation. The need for new methods of directed differentiation of hESCs into functional CMs and cardiac progenitors has led to an explosion of research utilizing chemical, genetic, epigenetic and lineage selection strategies to direct cardiac differentiation and enrich populations of cardiac cells for therapeutic use. Here, we review these approaches and highlight their increasingly important roles in stem cell biology and cardiac regenerative medicine.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Lloyd-Jones D, Adams R, Carnethon M et al.: Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation119(3),480–486 (2009).
    • Chien KR, Domian IJ, Parker KK: Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science322(5907),1494–1497 (2008).
    • Kehat I, Kenyagin-Karsenti D, Snir M et al.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108(3),407–414 (2001).▪ First comprehensive characterization of human embryonic stem cell (hESC)-derived cardiomyocytes (CMs).
    • Xu C, Police S, Rao N, Carpenter MK: Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res.91(6),501–508 (2002).
    • Itskovitz-Eldor J, Schuldiner M, Karsenti D et al.: Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med.6(2),88–95 (2000).
    • He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ: Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res.93(1),32–39 (2003).▪ First characterization of electrophysiological heterogeneity among cultures of hESC-derived CMs.
    • Beltrami CA, Finato N, Rocco M et al.: Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation89(1),151–163 (1994).
    • Fukuda K: Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs25(3),187–193 (2001).
    • Graichen R, Xu X, Braam SR et al.: Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation76(4),357–370 (2008).
    • 10  Gaur M, Ritner C, Sievers RE et al.: Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy (2010) (Epub ahead of print).
    • 11  Mummery CL, van Achterberg TA, van den Eijnden-van Raaij AJ et al.: Visceral-endoderm-like cell lines induce differentiation of murine P19 embryonal carcinoma cells. Differentiation46(1),51–60 (1991).
    • 12  Mummery C, Ward-van Oostwaard D, Doevendans P et al.: Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107(21),2733–2740 (2003).
    • 13  Xu XQ, Graichen R, Soo SY et al.: Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation76(9),958–970 (2008).
    • 14  Mummery CL, Feijen A, Moolenaar WH, van den Brink CE, de Laat SW: Establishment of a differentiated mesodermal line from P19 EC cells expressing functional PDGF and EGF receptors. Exp. Cell Res.165(1),229–242 (1986).
    • 15  Laflamme MA, Chen KY, Naumova AV et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25(9),1015–1024 (2007).
    • 16  Sugi Y, Lough J: Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev. Biol.168(2),567–574 (1995).
    • 17  Smith JC, Price BM, Van Nimmen K, Huylebroeck D: Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature345(6277),729–731 (1990).
    • 18  Nakajima Y, Yamagishi T, Ando K, Nakamura H: Significance of bone morphogenetic protein-4 function in the initial myofibrillogenesis of chick cardiogenesis. Dev. Biol.245(2),291–303 (2002).
    • 19  Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X: Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev. Biol.178(1),198–202 (1996).
    • 20  Ladd AN, Yatskievych TA, Antin PB: Regulation of avian cardiac myogenesis by activin/TGF-β and bone morphogenetic proteins. Dev. Biol.204(2),407–419 (1998).
    • 21  Barron M, Gao M, Lough J: Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev. Dyn.218(2),383–393 (2000).
    • 22  Yao S, Chen S, Clark J et al.: Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. USA103(18),6907–6912 (2006).
    • 23  Yang L, Soonpaa MH, Adler ED et al.: Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature453(7194),524–528 (2008).▪ Identification of a human cardiac progenitor derived from hESCs.
    • 24  Schneider VA, Mercola M: Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev.15(3),304–315 (2001).
    • 25  Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB: Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev.15(3),316–327 (2001).
    • 26  Sargent CY, Berguig GY, McDevitt TC: Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture. Tissue Eng. Part A15(2),331–342 (2009).
    • 27  Sargent CY, Berguig GY, Kinney MA et al.: Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnol. Bioeng.105(3),611–626 (2010).
    • 28  Domian IJ, Chiravuri M, van der Meer P et al.: Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science326(5951),426–429 (2009).
    • 29  Lim LP, Lau NC, Garrett-Engele P et al.: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433(7027),769–773 (2005).
    • 30  Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet.39(3),380–385 (2007).
    • 31  Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ: Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. USA102(34),12135–12140 (2005).
    • 32  Kanellopoulou C, Muljo SA, Kung AL et al.: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19(4),489–501 (2005).
    • 33  Bernstein E, Kim SY, Carmell MA et al.: Dicer is essential for mouse development. Nat. Genet.35(3),215–217 (2003).
    • 34  Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature436(7048),214–220 (2005).
    • 35  Zhao Y, Ransom JF, Li A et al.: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell129(2),303–317 (2007).
    • 36  Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M: MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res.100(3),416–424 (2007).
    • 37  Care A, Catalucci D, Felicetti F et al.: MicroRNA-133 controls cardiac hypertrophy. Nat. Med.13(5),613–618 (2007).
    • 38  Ivey KN, Muth A, Arnold J et al.: MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell2(3),219–229 (2008).▪▪ First demonstration that miRNAs control hESC differentiation.
    • 39  Kawamura T, Ono K, Morimoto T et al.: Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J. Biol. Chem.280(20),19682–19688 (2005).
    • 40  Takeuchi JK, Bruneau BG: Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature459(7247),708–711 (2009).▪ Determined a role for chromatin remodeling in directing cardiac differentiation.
    • 41  Xu C, Police S, Hassanipour M, Gold JD: Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev.15(5),631–639 (2006).
    • 42  Hattori F, Chen H, Yamashita H et al.: Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods7(1),61–66 (2010).
    • 43  Huber I, Itzhaki I, Caspi O et al.: Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J.21(10),2551–2563 (2007).
    • 44  Xu XQ, Zweigerdt R, Soo SY et al.: Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy10(4),376–389 (2008).
    • 45  Kita-Matsuo H, Barcova M, Prigozhina N et al.: Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS ONE4(4),e5046 (2009).
    • 46  Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C: Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol. Ther.15(11),2027–2036 (2007).
    • 47  Santangelo P, Nitin N, Bao G: Nanostructured probes for RNA detection in living cells. Ann. Biomed. Eng.34(1),39–50 (2006).
    • 48  Wu SM, Fujiwara Y, Cibulsky SM et al.: Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell127(6),1137–1150 (2006).
    • 49  Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G: Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc. Natl Acad. Sci. USA102(37),13170–13175 (2005).
    • 50  Fehling HJ, Lacaud G, Kubo A et al.: Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development130(17),4217–4227 (2003).
    • 51  Kattman SJ, Huber TL, Keller GM: Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell11(5),723–732 (2006).▪ Among the first studies to demonstrate that major cardiac lineages may arise from a common progenitor.
    • 52  Moretti A, Caron L, Nakano A et al.: Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell127(6),1151–1165 (2006).▪ Among the first studies to demonstrate that major cardiac lineages may arise from a common progenitor.
    • 53  Bu L, Jiang X, Martin-Puig S et al.: Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature460(7251),113–117 (2009).▪ Identification of human cardiac progenitors derived from hESCs.
    • 54  Kitajima S, Takagi A, Inoue T, Saga Y: MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development127(15),3215–3226 (2000).
    • 55  Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF, Taketo MM: MesP1: a novel basic helix–loop–helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development122(9),2769–2778 (1996).
    • 56  Saga Y, Kitajima S, Miyagawa-Tomita S: Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc. Med.10(8),345–352 (2000).
    • 57  Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T: MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development126(15),3437–3447 (1999).
    • 58  Bondue A, Lapouge G, Paulissen C et al.: Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell3(1),69–84 (2008).
    • 59  Lindsley RC, Gill JG, Murphy TL et al.: Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell3(1),55–68 (2008).
    • 60  David R, Brenner C, Stieber J et al.: MesP1 drives vertebrate cardiovascular differentiation through DKK-1-mediated blockade of Wnt-signalling. Nat. Cell Biol.10(3),338–345 (2008).
    • 61  Carpenter MK, Rosler ES, Fisk GJ et al.: Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev. Dyn.229(2),243–258 (2004).
    • 62  King FW, Ritner C, Liszewski W et al.: Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures. Stem Cells Dev.18(10),1441–1450 (2009).▪▪ Determined that undifferentiated hESC cultures contain stem cell populations with predetermined fates.
    • 63  Laflamme MA, Gold J, Xu C et al.: Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol.167(3),663–671 (2005).
    • 64  van Laake LW, Passier R, Monshouwer-Kloots J et al.: Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res.1(1),9–24 (2007).
    • 65  van Laake LW, Passier R, Monshouwer-Kloots J et al.: Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat. Protoc.2(10),2551–2567 (2007).
    • 66  van Laake LW, Passier R, Doevendans PA, Mummery CL: Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ. Res.102(9),1008–1010 (2008).▪ Extended the assessment of cardiac function in mice to 12 weeks following hESC-derived CM transplantation, underscoring the importance of long-term analysis and the challenges to using rodents as a preclinical model for myocardial therapy.
    • 67  Leor J, Gerecht S, Cohen S et al.: Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart93(10),1278–1284 (2007).
    • 68  Kofidis T, Lebl DR, Swijnenburg RJ, Greeve JM, Klima U, Robbins RC: Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur. J. Cardiothorac. Surg.29(1),50–55 (2006).
    • 69  Caspi O, Huber I, Kehat I et al.: Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol.50(19),1884–1893 (2007).
    • 70  Angeli FS, Shapiro M, Amabile N et al.: Left ventricular remodeling after myocardial infarction: characterization of a swine model on β-blocker therapy. Comp. Med.59(3),272–279 (2009).
    • 71  Everett TH 4th, Wilson EE, Foreman S, Olgin JE: Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping. Circulation112(11),1532–1541 (2005).
    • 72  Kehat I, Khimovich L, Caspi O et al.: Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22(10),1282–1289 (2004).
    • 73  Drukker M, Katchman H, Katz G et al.: Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells24(2),221–229 (2006).
    • 74  Foldes G, Harding SE, Ali NN: Cardiomyocytes from embryonic stem cells: towards human therapy. Expert Opin. Biol. Ther.8(10),1473–1483 (2008).
    • 75  Martin-Puig S, Wang Z, Chien KR: Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell2(4),320–331 (2008).
    • 76  Murry CE, Keller G: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132(4),661–680 (2008).