We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Converging technologies to enable induced pluripotent stem cells in drug discovery

    Peter Flynn

    Fate Therapeutics, Inc., 3535 General Atomics Drive, Suite 200, San Diego, CA 92121, USA

    ,
    Jessica Yingling

    † Author for correspondence

    Fate Therapeutics, Inc., 3535 General Atomics Drive, Suite 200, San Diego, CA 92121, USA.

    &
    Dan Shoemaker

    Fate Therapeutics, Inc., 3535 General Atomics Drive, Suite 200, San Diego, CA 92121, USA

    Published Online:https://doi.org/10.2217/rme.10.48
    Free first page

    Bibliography

    • Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126,663–676 (2006).
    • Miura K, Okada Y, Aoi T et al.: Variation in the safety of induced pluripotent stem cell lines. Nat. Biotech.27(8),743–745 (2009).
    • Soldner F, Hockemeyer D, Beard C et al.: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5),964–977 (2009).
    • Woltjen K, Michael IP, Mohseni P et al.: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239),766–770 (2009).
    • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science322(5903),945–949 (2008).
    • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903),949–953 (2008).
    • Zhou H, Wu S, Joo JY, Zhu S et al.: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4(5),381–384 (2009).
    • Aiba K, Nedorezov T, Piao Y et al.: Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells. DNA Res.16(1),73–80 (2009).
    • Feng Q, Lu SJ, Klimanskaya I et al.: Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells28(4),704–712 (2010).
    • 10  Sommer CA, Sommer AG, Longmire TA et al.: Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells28(1),64–74 (2010).
    • 11  Lin T, Ambasudhan R, Yuan X et al.: A chemical platform for improved induction of human iPSCs. Nat. Meth.6(11),805–808 (2009).
    • 12  Nichols J, Smith A: Naive and primed pluripotent states. Cell Stem Cell4(6),487–492 (2009).
    • 13  Hanna J, Cheng AW, Saha K et al.: Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl Acad. Sci. USA107(20),9222–9227 (2010).
    • 14  Stadtfeld M, Apostolou E, Akutsu H et al.: Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature465(7295),175–181 (2010).