We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors

    Angie Rizzino

    Eppley Institute for Research in Cancer & Allied Diseases & Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA.

    Published Online:https://doi.org/10.2217/rme.10.45

    Until recently, culturing human pluripotent stem cells was hampered by three prominent technical problems: a high degree of unwanted cellular stress when the cells are passaged, unacceptably low cloning efficiency and poor recovery of cryopreserved stocks. This review discusses recent developments that address these problems. A major focus of the review is the use of p160 Rho-associated coiled-coil kinase inhibitors for improving both the cloning efficiency and the recovery of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. An underlying theme of this review is that the three problems have a common cause: separation of human pluripotent stem cells from one another increases cellular stress, which greatly decreases their viability unless special steps are taken.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282(5395),1145–1147 (1998).▪ First report demonstrating the isolation of human embryonic stem cells (hESCs).
    • Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151),318–324 (2007).
    • Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • Kiskinis E, Eggan K: Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest.120(1),51–59 (2010).
    • Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M: Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells28(1),93–99 (2010).
    • Krawetz RJ, Li X, Rancourt DE: Human embryonic stem cells: caught between a ROCK inhibitor and a hard place. Bioessays31(3),336–343 (2009).
    • Reubinoff BE, Pera MF, Fong C, Trounson A, Bongso A: Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro.Nat. Biotechnol.18(4),399–404 (2000).
    • Buzzard JJ, Gough NM, Crook JM, Colman A: Karyotype of human ES cells during extended culture. Nat. Biotechnol.22(4),381–382 (2004).
    • 10  Mitalipova MM, Rao RR, Hoyer DM et al.: Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol.23(1),19–20 (2005).
    • 11  Trish E, Dimos J, Eggan K: Passaging HuES human embryonic stem cell-lines with trypsin. J. Vis. Exp.12(1),49 (2006).
    • 12  Andrews PW: Response letter. Nat. Biotechnol.22(4),382 (2004).
    • 13  Ware CB, Nelson AM, Blau CA: Controlled-rate freezing of hESC. Biotechniques38(6),879–880, 882–883 (2005).
    • 14  Hasegawa K, Fujioka T, Nakamura Y, Nakatsuji N, Suemori H: A method for the selection of human embryonic stem cell sublines with high replating efficiency after single-cell dissociation. Stem Cells24(12),2649–2660 (2006).
    • 15  Bajpai R, Lesperance J, Kim M, Terskikh AV: Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol. Reprod. Dev.75(5),818–827 (2008).▪ First report describing the use of Accutase® with hESCs.
    • 16  Li X, Krawetz R, Liu S, Meng G, Rancourt DE: ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum. Reprod.24(3),580–589 (2009).
    • 17  Lin T, Ambasudhan R, Yuan X et al.: A chemical platform for improved induction of human iPSCs. Nat. Methods6(11),805–808 (2009).
    • 18  Amit M, Carpenter MK, Inokuma MS et al.: Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol.227(2),271–278 (2000).
    • 19  Pyle AD, Lock LF, Donovan PJ: Neurotrophins mediate human embryonic stem cell survival. Nat. Biotechnol.24(3),344–350 (2006).▪▪ First report describing factors that improve the cloning efficiency of hESCs.
    • 20  Watanabe K, Ueno M, Kamiya D et al.: A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol.25(6),681–686 (2007).▪▪ First report describing use of Rho-associated coiled-coil kinase (ROCK) inhibitors with hESCs.
    • 21  Martin-Ibanez R, Unger C, Stromberg A, Baker D, Canals J, Hovatta O: Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum. Reprod.23(12),2744–2754 (2008).▪▪ First report showing that ROCK inhibitors improve recovery of cryopreserved hESCs.
    • 22  Reubinoff BE, Pera MF, Vajta G, Trounson AO: Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum. Reprod.16(10),2187–2194 (2001).
    • 23  Fujioka T, Yasuchika K, Nakamura Y, Naktsuju N, Suemori H: A simple and efficient cryopreservation method for primate embryonic stem cells. Int. J. Dev. Biol.48(10),1149–1154 (2009).
    • 24  Li T, Zhou C, Liu C, Mai Q, Zhuang G: Bulk vitrification of human embryonic stem cells. Human Reprod.23(2),358–364 (2008).
    • 25  Claassen DA, Desler MM, Rizzino A: ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol. Reprod. Dev.76(8),722–732 (2009).▪▪ First report showing that ROCK inhibitors improve recovery of cryopreserved human induced pluripotent stem cells.
    • 26  Takehara T, Teramura T, Onodera Y et al.: Rho-associated kinase inhibitor Y-27632 promotes survival of cynomolgus monkey embryonic stem cells. Mol. Human Reprod.14(11),627–634 (2008).
    • 27  Harb N, Archer TK, Sato N: The Rho–ROCK–myosin signaling axis determines cell–cell integrity of self-renewing pluripotent stem cells. PLoS ONE3(8),e3001 (2008).
    • 28  Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA: Feeder-independent culture of human embryonic stem cells. Nat. Methods3(8),637–646 (2006).
    • 29  Kehoe DE, Jing D, Lock LT, Tzanakakis EM: Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng. Part A16(2),405–421 (2010).
    • 30  Krawetz R, Taiani JT, Liu S et al.: Large-scale expansion of pluripotent human embryonic stem cells in stirred suspension bioreactors. Tissue Eng. Part C16(4),573–582 (2010).
    • 31  Cortes JL, Sanchez L, Ligero G et al.: Mesenchymal stem cells facilitate the derivation of human embryonic stem cells from cryopreserved poor-quality embryos. Hum. Reprod.24(8),1844–1851 (2009).
    • 32  Taei A, Gourabi H, Seifinejad A et al.: Derivation of new human embryonic stem cell lines from preimplantation genetic screening and diagnosis-analyzed embryos. In vitro Cell Dev. Biol. Anim.46(3–4),395–402 (2010).
    • 33  Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S: Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell5(3),237–241 (2009).
    • 34  Westfall SD, Sachdev S, Das P et al.: Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev.17(5),869–881 (2008).
    • 35  Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD: Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction139(1),85–97 (2010).
    • 36  Esteban MA, Wang T, Qin B et al.: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell6(1),71–79 (2010).
    • 37  Park IH, Zhao R, West JA et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature451(7175),141–146 (2008).
    • 38  Koyanagi M, Takahashi J, Arakawa Y et al.: Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J. Neurosci. Res.86(2),270–280 (2008).