We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Understanding graft-induced dyskinesia

    EL Lane

    † Author for correspondence

    Brain Repair Group, School of Bioscience, Cardiff University, Cardiff CF10 3AX, Wales, UK

    &
    GA Smith

    Brain Repair Group, School of Bioscience, Cardiff University, Cardiff CF10 3AX, Wales, UK

    Published Online:https://doi.org/10.2217/rme.10.42

    The transplantation of dopaminergic cells for the treatment of symptoms of Parkinson’s disease has several hurdles to overcome before it can be considered a successful therapeutic approach. One issue is the development of abnormal involuntary movements in the absence of L-3,4-dihydroxyphenylalanine following the transplantation of fetal ventral mesencephalon identified in three different clinical trials. Hypotheses as to the cause of these movements include: the composition of the graft, size of the graft, L-3,4-dihydroxyphenylalanine exposure and L-3,4-dihydroxyphenylalanine-induced dyskinesia prior to transplantation and inflammatory responses in and around the graft. We evaluate the clinical evidence supporting these hypotheses and the preclinical models upon which experiments are being based to resolve them.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Parkinson J: An Essay On The Shaking Palsy. Sherwood, Neely and Jones, London, UK (1817).
    • Chaudhuri KR, Healy DG, Schapira AH: Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol.5,235–245 (2006).
    • Ahlskog JE, Muenter MD: Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord.16,448–458 (2001).
    • Muller T, Russ H: Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin. Pharmacother.7,1715–1730 (2006).
    • Cenci MA, Lindgren HS: Advances in understanding L-DOPA-induced dyskinesia. Curr. Opin. Neurobiol.17,665–671 (2007).
    • Carta M, Carlsson T, Munoz A, Kirik D, Bjorklund A: Involvement of the serotonin system in L-dopa-induced dyskinesias. Parkinsonism Relat. Disord.14(Suppl. 2),S154–S158 (2008).
    • Brundin P, Nilsson OG, Strecker RE et al.: Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res.65,235–240 (1986).
    • Bjorklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD: Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res.199,307–333 (1980).
    • Nadaud D, Herman JP, Simon H, Le Moal M: Functional recovery following transplantation of ventral mesencephalic cells in rat subjected to 6-OHDA lesions of the mesolimbic dopaminergic neurons. Brain Res.304,137–141 (1984).
    • 10  Backlund EO, Granberg PO, Hamberger B et al.: Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg.62,169–173 (1985).
    • 11  Markham CM, Rand RW, Jacques DB et al.: Transplantation of fetal mesencephalic tissue in Parkinson’s patients. Stereotact. Funct. Neurosurg.62,134–140 (1994).
    • 12  Peschanski M, Defer G, N’Guyen JP et al.: Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of fetal ventral mesencephalon. Brain117(Pt 3),487–499 (1994).
    • 13  Freeman TB, Olanow CW, Hauser RA et al.: Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann. Neurol.38,379–388 (1995).
    • 14  Defer GL, Geny C, Ricolfi F et al.: Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain119(Pt 1),41–50 (1996).
    • 15  Kopyov OV, Jacques DS, Lieberman A, Duma CM, Rogers RL: Outcome following intrastriatal fetal mesencephalic grafts for Parkinson’s patients is directly related to the volume of grafted tissue. Exp. Neurol.146,536–545 (1997).
    • 16  Kordower JH, Freeman TB, Chen EY et al.: Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov. Disord.13,383–393 (1998).
    • 17  Lindvall O: Update on fetal transplantation: the Swedish experience. Mov. Disord.13(Suppl. 1),83–87 (1998).
    • 18  Freed CR, Greene PE, Breeze RE et al.: Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med.344,710–719 (2001).▪▪ First full report of graft-induced dyskinesia following transplantation in a double-blind, placebo-controlled study.
    • 19  Olanow CW, Goetz CG, Kordower JH et al.: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol.54,403–414 (2003).
    • 20  Greene P, Fahn S, Tsai WY et al.: Severe spontaneous dyskinesias: a disabling complication of embryonic dopaminergic tissue implants in a subset of transplanted patients with advanced Parkinson’s disease. Mov. Disord.14,904 (1999).▪ First report of graft-induced dyskinesia in patients after transplantation.
    • 21  Hagell P, Piccini P, Bjorklund A et al.: Dyskinesias following neural transplantation in Parkinson’s disease. Nat. Neurosci.5,627–628 (2002).
    • 22  Piccini P, Pavese N, Hagell P et al.: Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain128,2977–2986 (2005).▪▪ Clinical examination of the factors influencing the success of transplantation in the Lund cohort.
    • 23  Olanow CW, Gracies JM, Goetz CG et al.: Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson’s disease: a double blind video-based analysis. Mov. Disord.24,336–343 (2009).▪▪ Clinical examination of the factors influencing the success of transplantation in the Tampa–Mount Sinai cohort.
    • 24  Freed C, Breeze R, Fahn S, Eidelberg D: Preoperative response to levodopa in the best predictor of transplant outcome. Ann. Neurol.55,896; author reply 896–897 (2004).
    • 25  Cho C, Alterman R, Miravite J, Shils J, Taglati M: Subthalamic DBS for the treatment of ‘runaway’ dyskinesias after embryonic or fetal tissue transplant. Mov. Disord.20,1237 (2005).
    • 26  Herzog J, Pogarell O, Pinsker MO et al.: Deep brain stimulation in Parkinson’s disease following fetal nigral transplantation. Mov. Disord.23,1293–1296 (2008).
    • 27  Ma Y, Feigin A, Dhawan V et al.: Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol.52,628–634 (2002).
    • 28  Winkler C, Kirik D, Bjorklund A: Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci.28,86–92 (2005).
    • 29  Goetz CG, Stebbins GT, Blasucci LM, Grobman MS: Efficacy of a patient-training videotape on motor fluctuations for on–off diaries in Parkinson’s disease. Mov. Disord.12,1039–1041 (1997).
    • 30  Cenci MA, Hagell P: Dyskinesia and neural grafting in Parkinson’s disease. In: Restorative Therapies In Parkinson’s Disease. Brundin P, Olanow W (Eds). Kluwer Academic/Plenum Publishers, NY, USA, 184–224 (2006).
    • 31  Langston JW, Ballard P: Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson’s disease. Can. J. Neurol. Sci.11,160–165 (1984).
    • 32  Cenci MA, Lee CS, Bjorklund A: L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur. J. Neurosci.10,2694–2706 (1998).
    • 33  Redmond DE, Vinuela A, Kordower JH, Isacson O: Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson’s disease. Neurobiol. Dis.29,103–116 (2008).
    • 34  Lane EL, Winkler C, Brundin P, Cenci MA: The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat. Neurobiol. Dis.22,334–345 (2006).
    • 35  Vinuela A, Hallett PJ, Reske-Nielsen C et al.: Implanted reuptake-deficient or wild-type dopaminergic neurons improve ON L-dopa dyskinesias without OFF-dyskinesias in a rat model of Parkinson’s disease. Brain131,3361–3379 (2008).
    • 36  Steece-Collier K, Collier TJ, Danielson PD et al.: Embryonic mesencephalic grafts increase levodopa-induced forelimb hyperkinesia in parkinsonian rats. Mov. Disord.18,1442–1454 (2003).
    • 37  Maries E, Kordower JH, Chu Y et al.: Focal not widespread grafts induce novel dyskinetic behavior in parkinsonian rats. Neurobiol. Dis.21,165–180 (2006).
    • 38  Soderstrom KE, Meredith G, Freeman TB et al.: The synaptic impact of the host immune response in a parkinsonian allograft rat model: influence on graft-derived aberrant behaviors. Neurobiol. Dis.32,229–242 (2008).
    • 39  Steece-Collier K, Soderstrom KE, Collier TJ, Sortwell CE, Maries-Lad E: Effect of levodopa priming on dopamine neuron transplant efficacy and induction of abnormal involuntary movements in parkinsonian rats. J. Comp. Neurol.515,15–30 (2009).
    • 40  Lane EL, Soulet D, Vercammen L, Cenci MA, Brundin P: Neuroinflammation in the generation of post-transplantation dyskinesia in Parkinson’s disease. Neurobiol. Dis.32,220–228 (2008).
    • 41  Lane EL, Brundin P, Cenci MA: Amphetamine-induced abnormal movements occur independently of both transplant- and host-derived serotonin innervation following neural grafting in a rat model of Parkinson’s disease. Neurobiol. Dis.35,42–51 (2009).
    • 42  Lane EL, Vercammen L, Cenci MA, Brundin P: Priming for L-DOPA-induced abnormal involuntary movements increases the severity of amphetamine-induced dyskinesia in grafted rats. Exp. Neurol.219,255–258 (2009).
    • 43  Carlsson T, Winkler C, Lundblad M et al.: Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol. Dis.21,657–668 (2006).▪ First report of amphetamine-induced abnormal involuntary movements in the rodent model.
    • 44  Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D: Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson’s disease. J. Neurosci.27,8011–8022 (2007).
    • 45  Cenci MA, Lundblad M: Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr. Protoc. Neurosci. Chapter 9, Unit 9, 25 (2007).
    • 46  Winkler C, Kirik D, Bjorklund A, Cenci MA: L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis.10,165–186 (2002).
    • 47  Lee CS, Cenci MA, Schulzer M, Bjorklund A: Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain123(Pt 7),1365–1379 (2000).
    • 48  Gaudin DP, Rioux L, Bedard PJ: Fetal dopamine neuron transplants prevent behavioral supersensitivity induced by repeated administration of L-dopa in the rat. Brain Res.506,166–168 (1990).
    • 49  Carlsson T, Carta M, Munoz A et al.: Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain132,319–335 (2009).
    • 50  Kuan WL, Lin R, Tyers P, Barker RA: The importance of A9 dopaminergic neurons in mediating the functional benefits of fetal ventral mesencephalon transplants and levodopa-induced dyskinesias. Neurobiol. Dis.25,594–608 (2007).
    • 51  Jacques DB, Kopyov OV, Eagle KS, Carter T, Lieberman A: Outcomes and complications of fetal tissue transplantation in Parkinson’s disease. Stereotact. Funct. Neurosurg.72,219–224 (1999).
    • 52  Ungerstedt U: Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol. Scand. Suppl.367,49–68 (1971).
    • 53  Ungerstedt U, Arbuthnott GW: Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res.24,485–493 (1970).
    • 54  Herman JP, Rouge-Pont F, Le Moal M, Abrous DN: Mechanisms of amphetamine-induced rotation in rats with unilateral intrastriatal grafts of embryonic dopaminergic neurons: a pharmacological and biochemical analysis. Neuroscience53,1083–1095 (1993).
    • 55  Torres EM, Dunnett SB: Amphetamine induced rotation in the assessment of lesions and grafts in the unilateral rat model of Parkinson’s disease. Eur. Neuropsychopharmacol.17,206–214 (2007).
    • 56  Kelley AE, Lang CG, Gauthier AM: Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum. Psychopharmacology95,556–559 (1988).
    • 57  Brown LL, Sharp FR: Metabolic mapping of rat striatum: somatotopic organization of sensorimotor activity. Brain Res.686,207–222 (1995).
    • 58  Brown LL: Somatotopic organization in rat striatum: evidence for a combinational map. Proc. Natl Acad. Sci. USA89,7403–7407 (1992).
    • 59  Munoz A, Carlsson T, Tronci E et al.: Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp. Neurol.219,298–307 (2009).
    • 60  Carta M, Carlsson T, Munoz A, Kirik D, Bjorklund A: Serotonin–dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesias. Prog. Brain Res.172,465–478 (2008).
    • 61  Mendez I, Vinuela A, Astradsson A et al.: Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat. Med.14,507–509 (2008).
    • 62  Carlsson T, Carta M, Munoz A et al.: Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain132,319–335 (2008).
    • 63  Carta M, Carlsson T, Kirik D, Bjorklund A: Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain130,1819–1833 (2007).
    • 64  Henry B, Duty S, Fox SH, Crossman AR, Brotchie JM: Increased striatal pre-proenkephalin B expression is associated with dyskinesia in Parkinson’s disease. Exp. Neurol.183,458–468 (2003).
    • 65  Picconi B, Centonze D, Hakansson K et al.: Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat. Neurosci.6,501–506 (2003).
    • 66  Cenci MA, Tranberg A, Andersson M, Hilbertson A: Changes in the regional and compartmental distribution of FosB- and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment. Neuroscience94,515–527 (1999).
    • 67  Blunt SB, Jenner P, Marsden CD: Autoradiographic study of striatal D1 and D2 dopamine receptors in 6-OHDA-lesioned rats receiving fetal ventral mesencephalic grafts and chronic treatment with L-dopa and carbidopa. Brain Res.582,299–311 (1992).
    • 68  Andersson M, Hilbertson A, Cenci MA: Striatal fosB expression is causally linked with L-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol. Dis.6,461–474 (1999).
    • 69  Cenci MA, Campbell K, Bjorklund A: Neuropeptide messenger RNA expression in the 6-hydroxydopamine-lesioned rat striatum reinnervated by fetal dopaminergic transplants: differential effects of the grafts on preproenkephalin, preprotachykinin and prodynorphin messenger RNA levels. Neuroscience57,275–296 (1993).
    • 70  Roy E, Cote PY, Gregoire L, Parent A, Bedard PJ: Mesencephalic grafts partially restore normal nigral dynorphin levels in 6-hydroxydopamine-lesioned rats treated chronically with L-dihydroxyphenylalanine. Neuroscience66,413–425 (1995).
    • 71  Yu TS, Wang SD, Liu JC, Yin HS: Changes in the gene expression of GABAA receptor α-1 and α-2 subunits and metabotropic glutamate receptor 5 in the basal ganglia of the rats with unilateral 6-hydroxydopamine lesion and embryonic mesencephalic grafts. Exp. Neurol.168,231–241 (2001).
    • 72  Rodriguez-Pallares J, Caruncho HJ, Munoz A, Guerra MJ, Labandeira-Garcia JL: GABAA receptor subunit expression in intrastriatal ventral mesencephalic transplants. Exp. Brain Res.135,331–340 (2000).
    • 73  Chritin M, Savasta M, Mennicken F et al.: Intrastriatal dopamine-rich implants reverse the increase of dopamine D2 receptor mRNA levels caused by lesion of the nigrostriatal pathway: a quantitative in situ hybridization study. Eur. J. Neurosci.4,663–672 (1992).
    • 74  Abrous DN, Torres EM, Annett LE, Reading PJ, Dunnett SB: Intrastriatal dopamine-rich grafts induce a hyperexpression of Fos protein when challenged with amphetamine. Exp. Brain Res.91,181–190 (1992).
    • 75  Cenci MA, Bjorklund A: Transection of corticostriatal afferents abolishes the hyperexpression of Fos and counteracts the development of rotational overcompensation induced by intrastriatal dopamine-rich grafts when challenged with amphetamine. Brain Res.665,167–174 (1994).
    • 76  Brodsky MA, Hogarth P, Nutt JG: OFF–off rebound dyskinesia in subthalamic nucleus deep brain stimulation of Parkinson’s disease. Mov. Disord.21,1487–1490 (2006).
    • 77  Merello M, Perez-Lloret S, Antico J, Obeso JA: Dyskinesias induced by subthalamotomy in Parkinson’s disease are unresponsive to amantadine. J. Neurol. Neurosurg. Psychiatry77,172–174 (2006).
    • 78  Schupbach WM, Chastan N, Welter ML et al.: Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J. Neurol. Neurosurg. Psychiatry76,1640–1644 (2005).
    • 79  Thobois S, Mertens P, Guenot M et al.: Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J. Neurol249,529–534 (2002).
    • 80  Hagell P, Brundin P: Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J. Neuropathol. Exp. Neurol.60,741–752 (2001).
    • 81  Holden C: Neuroscience. Fetal cells again? Science326,358–359 (2009).
    • 82  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131,861–872 (2007).▪ First report of human induced pluripotent stem cells.
    • 83  Andersson E, Tryggvason U, Deng Q et al.: Identification of intrinsic determinants of midbrain dopamine neurons. Cell124,393–405 (2006).
    • 84  Li JY, Christophersen NS, Hall V, Soulet D, Brundin P: Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci.31,146–153 (2008).
    • 85  Kopyov OV, Jacques D, Lieberman A, Duma CM, Rogers RL: Clinical study of fetal mesencephalic intracerebral transplants for the treatment of Parkinson’s disease. Cell Transplant5,327–337 (1996).