We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Blood supply of the graft after cellular cardiomyoplasty

    Thorsten Reffelmann

    † Author for correspondence

    Klinik & Poliklinik für Innere Medizin B, Universitätsklinikum der Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Löffler Str. 23 a,17475 Greifswald, Germany.

    &
    Robert A Kloner

    The Heart Institute, Good Samaritan Hospital, Division of Cardiology, Keck School of Medicine, University of Southern California, 1225 Wilshire Boulevard, Los Angeles, CA 90017-2395, USA

    Published Online:https://doi.org/10.2217/rme.10.40

    Cellular cardiomyoplasty is under extensive investigation as a potential therapeutic strategy after myocardial infarction, in congestive heart failure and chronic ischemic heart disease. Various cell sources and techniques for transplantation have been studied in animal models of cardiac disease. The initial goal of replacing myocardial scar tissue by vital myocardial cells, integrated into the host, simultaneously beating and contributing to systolic force, has not yet been accomplished. However, most experimental models provided evidence for enhanced vascularization after cell transplantation. In some investigations, neovascularization was also shown to be accompanied by increased myocardial perfusion. Mechanisms by which vascularization occurs have not been fully elucidated: either the transplanted cells provide an angiogenic stimulus, involving various paracrine or hormone-like factors, which induces the formation of a new vasculature or, depending on the source of transplanted cells, the cells incorporate into the vascular network after proliferation and differentiation. This review summarizes research that specifically studied the occurrence, magnitude and mechanisms of enhanced myocardial blood supply after cellular cardiomyoplasty

    Papers of special note have been highlighted as:▪  of interest ▪▪ of considerable interest

    Bibliography

    • Reffelmann T, Kloner RA: Cellular cardiomyoplasty–cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc. Res.58,358–368 (2003).
    • Forrester JS, White AJ, Matsushita S, Chakravarty T, Makkar RR: New paradigms of myocardial regeneration post-infarction. Tissue preservation, cell environment, and pluripotent cell sources. J. Am. Coll. Cardiol. Interv.2,1–8 (2009).
    • Forrester JS, Makkar RR, Marbán E: Long-term outcome of stem cell therapy for acute myocardial infarction. Right results, wrong reasons. J. Am. Coll. Cardiol.53,2270–2272 (2009).▪ Interesting discussion of the scientific work of cell transplantation.
    • Reffelmann T, Könemann S, Kloner RA: Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair. Putting it in perspective with existing therapy. J. Am. Coll. Cardiol.53,305–308 (2009).
    • Müller-Ehmsen J, Peterson KL, Kedes L et al.: Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocates after myocardial infarction and effect on cardiac function. Circulation105,1720–1726 (2002).▪ Long-term follow-up of transplantation of neonatal cardiomyocytes in experimental myocardial infarction.
    • Taylor DA, Atkins BZ, Hungspreugs P et al.: Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med.4,929–933 (1998).
    • Jain M, DerSimonian H, Brenner DA et al.: Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation103,1920–1927 (2001).
    • Min JY, Yang Y, Converso KL et al.: Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol.92,288–296 (2002).
    • Tomita S, Li RK, Weisel RD et al.: Autologous transplantation of bone marrow cells improves damaged heart function. Circulation100(19 Suppl. 2),II247–II256 (1999).
    • 10  Jumaby M, Matsumoto T, Yokoyama S et al.: Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair cardiac tissue in rats. J. Mol. Cell. Cardiol.47,565–575 (2009).
    • 11  Kocher AA, Schuster MD, Szabolcs MJ et al.: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7,430–436 (2001).▪▪ Landmark study on angiogenesis after transplantation of bone marrow-derived cells.
    • 12  Ramshorst J, Bax JJ, Beeres SL et al.: Intramyocardial bone marrow cell injection for chronic myocardial ischemia. A randomized controlled trial. JAMA301,1997–2004 (2009).▪▪ Systematic randomized trial demonstrating effective reduction of anginal symptoms and perfusion defects by intramyocardial cell transplantation in patients with severe chronic angina pectoris
    • 13  Tayyareci Y, Sezer M, Umman B et al.: Intracoronary autologous bone marrow-derived mononuclear cell transplantation improves coronary collateral vessel formation and recruitment capacity in patients with ischemic cardiomyopathy: a combined hemodynamic and scintigraphic approach. Angiology59,145–155 (2008).
    • 14  Korf-Klingebiel M, Kempf T, Sauer T et al.: Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur. Heart J.29,2851–2858 (2008).
    • 15  Reffelmann T, Hale SL, Dow JS, Kloner RA: The no-reflow phenomenon persists long term after ischemia reperfusion in the rat, and predicts infarct expansion. Circulation108,2911–2917 (2003).
    • 16  Rossi MA: Chronic hemodynamic unloading regulates the morphologic development of newborn mouse hearts transplanted into the ear of isogenic adult mice. Am. J. Pathol.141,183–191 (1992).
    • 17  Bishop SP, Anderson PG, Tucker DC: Morphological development of the rat heart growing in oculo in the absence of hemodynamic workload. Circ. Res.66,84–102 (1990).
    • 18  Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE: Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol.33,907–921 (2001).
    • 19  Retuerto MA, Schalch P, Patejunas G et al.: Angiogenic pretreatment improves efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation. J. Thorac. Cardiovasc. Surg.127,1041–1049 (2004).
    • 20  Retuerto MA, Beckmann JT, Carbray J et al.: Angiogenic pretreatment to enhance myocardial function after cellular cardiomyoplasty with skeletal myoblasts. J. Thorac. Cardiovasc. Surg.133,478–484 (2007).
    • 21  Azarnoush K, Maurel A, Sebbah L et al.: Enhancement of the functional benefits of skeletal myoblast transplantation by means of co-administration of hypoxia-inducible factor 1-α. J. Thorac. Cardiovasc. Surg.130,173–179 (2005).
    • 22  Yao M, Dieterle T, Hale SL et al.: Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function. J. Mol. Cell. Cardiol.35,661–670 (2003).
    • 23  Etzion S, Battler A, Barash IM et al.: Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J. Mol. Cell. Cardiol.33,1321–1330 (2001).
    • 24  Li RK, Mickle DA, Weisel RD, Zhang J, Mohabeer MK: In vivo survival and function of transplanted rat cardiomyocytes. Circ. Res.78,283–288 (1996).
    • 25  Li RK, Mickle DAG, Weisel RD et al.: Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation96(9 Suppl. 2),II179–II187 (1997).
    • 26  Müller-Ehmsen J, Whittaker P, Kloner RA et al.: Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell. Cardiol.34,107–116 (2002).
    • 27  Skobel E, Schuh A, Schwarz ER et al.: Transplantation of fetal cardiomyocytes into infarcted rat hearts results in long-term functional improvement. Tissue Eng.10,849–864 (2004).
    • 28  Reffelmann T, Dow JS, Dai W, Hale SL, Simkhovich BZ, Kloner RA: Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional myocardial blood flow of infarcted myocardium. J. Mol. Cell. Cardiol.35,607–613 (2003).
    • 29  Schuh A, Breuer S, Al Dashti R et al.: Administration of vascular endothelial growth factor adjunctive to fetal cardiomyocyte transplantation and improvement of cardiac function in the rat model. J. Cardiovasc. Pharmacol. Ther.10,55–66 (2005).
    • 30  Schwarz ER, Speakman MT, Patterson M et al.: Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat – angiogenesis and angioma formation. J. Am. Coll. Cardiol.35,1323–1330 (2000).
    • 31  Miyagawa S, Sawa Y, Taketani S et al.: Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation105,2556–2561 (2002).▪ Systematic study suggesting that adjunctive application of HGF could improve results of cell transplantation.
    • 32  Ghostine S, Carrion C, Souza LC et al.: Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation106(12 Suppl. 1),I131–I136 (2002).▪ Long-term follow-up after transplantation of skeletal myoblasts.
    • 33  Perez-Ilzarbe M, Agbulut O, Pelacho B et al.: Characterization of the paracrine effects of human skleletal myoblasts transplanted in infarcted myocardium. Eur. J. Heart Fail.10,1065–1072 (2008).
    • 34  Xia JH, Xie AN, Zhang KL, Xu L, Zheng XY: The vascular endothelial growth factor expression and vascular regeneration in infarcted myocardium by skeletal muscle satellite cells. Chin. Med. J.119,117–121 (2006).
    • 35  Memon IA, Sawa Y, Miyagawa S, Taketani S, Matsuda H: Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg.130,646–653 (2005).
    • 36  Asahara T, Murohara T, Sullivan A et al.: Isolation of putative progenitor endothelial cells for angiogenesis. Science275,964–967 (1997).▪▪ Landmark study demonstrating the existence of endothelial progenitor cell.
    • 37  Asahara T, Masuda H, Takahashi T et al.: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85,221–228 (1999).
    • 38  Shi Q, Rafii S, Wu MH et al.: Evidence for circulating bone marrow-derived endothelial cells. Blood92,362–367 (1998).
    • 39  Murohara T, Ikeda H, Duan J et al.: Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest.105,1527–1536 (2000).
    • 40  Yeh ETH, Zhang S, Wu HD, Körbling M, Willerson JT, Estrov Z: Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation108,2070–2073 (2003).
    • 41  Kawamoto A, Gwon HC, Iwaguro H et al.: Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation103,634–637 (2001).
    • 42  Kawamoto A, Tkebuchava T, Nishimura H et al.: Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation107,461–468 (2003).
    • 43  Fuchs S, Baffour R, Zhou YF et al.: Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. Am. Coll. Cardiol.37,1726–1732 (2001).
    • 44  Kalka C, Masuda H, Takahashi T et al.: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl Acad. Sci. USA97,3422–3427 (2000).
    • 45  Schuh A, Liehen EA, Sasse A et al.: Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res. Cardiol.103,69–77 (2008).
    • 46  Ziebart T, Yoon CH, Trepels T et al.: Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ. Res.103,1327–1334 (2008).
    • 47  Pittenger MF, Mackay AM, Beck SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science284,143–147 (1999).▪▪ Landmark study showing the potential of mesenchymal stem cells.
    • 48  Pittenger MF, Martin BJ: Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res.95,9–20 (2004).
    • 49  Dai W, Hale SL, Martin B et al.: Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium. Short- and long-term effects. Circulation112,214–223 (2005).
    • 50  Schuleri KH, Amado LC, Boyle AJ et al.: Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am. J. Physiol. Heart Circ. Physiol.294(5),H2002–H2011 (2008).
    • 51  Tang J, Wang J, Yang J et al.: Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur. J. Cardiothorac. Surg.36,644–650 (2009).
    • 52  Kinnaird T, Stabile E, Burnett MS et al.: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res.94,678–685 (2004).
    • 53  Wang JS, Shum-Tim D, Chedrawy E, Chiu R: The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiological and therapeutic implications. J. Thorac. Cardiovasc. Surg.122,699–705 (2001).
    • 54  Kinnaird TD, Stabile E, Burnett MS et al.: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109,1543–1549 (2004).
    • 55  Losordo DW, Dimmeler S: Therapeutic angiogenesis and vasculaogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation109,2487–2491 (2004).▪ Good review on angiogenic cytokines.
    • 56  Renault MA, Roncalli J, Togers J et al.: The Hedgehog transcription factor Gli3 modulates angiogenesis. Circ. Res.105,818–826 (2009).
    • 57  Renault MA, Losordo DW: Therapeutic myocardial angiogenesis. Microvasc. Res.74,159–171 (2007).▪ Good review on therapeutic angiogenesis.
    • 58  Suzuki K, Murtuza B, Smolenski RT et al.: Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation104,I207–I212 (2001).
    • 59  Yang J, Zhou W, Zheng W et al.: Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology107,17–29 (2007).
    • 60  Payne TR, Oshima H, Okada M et al.: A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J. Am. Coll. Cardiol.50,1677–1684 (2007).
    • 61  Rong SL, Lu YX, Liao YH et al.: Effects of transplanted myoblasts transfected with human growth hormone gene on improvement of ventricular function of rats. Chin. Med. J.121,347–354 (2008).
    • 62  Urbich C, Aicher A, Heeschen E et al.: Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol.39,733–742 (2005).
    • 63  Christman KL, Vardanian AJ, Fang Q et al.: Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol.44,654–660 (2004).
    • 64  Christman KL, Fang Q, Yee MS et al.: Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials26,1139–1144 (2005).
    • 65  Hsieh PC, Davis ME, Gannon C et al.: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest.116,237–248 (2006).
    • 66  Fujimoto KL, Ma Z, Nelson DM et al.: Synthesis, characterization and therapeutic efficacy of biodegradable, thermo-responsive hydrogel designed for application in chronic infracted myocardium. Biomaterials30,4357–4368 (2006).
    • 67  Ott HC, Matthiesen TS, Goh SK et al.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med.14,213–221 (2008).
    • 68  Inamori M, Mizumoto H, Kajiwara T: An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng. Part A15,2029–2037 (2009).
    • 69  Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP: Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet361,47–49 (2003).
    • 70  Perin EC, Dohmann HF, Borojevic R et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation107,2294–2302 (2003).
    • 71  Erbs S, Linke A, Schächinger V et al.: Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation116,366–374 (2007).
    • 72  Losordo DW, Schatz RA, White CJ et al.: Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a Phase I/IIa double-blind, randomized controlled trial. Circulation115,3165–3172 (2007).
    • 73  Hendrikx M, Hensen K, Clijsters C et al.: Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation114(Suppl. 1),I101–I107 (2006).
    • 74  Fuchs S, Dib N, Cohen BM et al.: A randomized, double-blind, placebo-controlled, multicenter, pilot study on the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc. Interv.68,372–378 (2006).
    • 75  Dohman HF, Perin EC, Takiya CM et al.: Transendocardial autologous bone marrow mononuclear cell injection in ischemic heart failure: postmortem anatomicopathologic and immunohistochemical findings. Circulation112,521–526 (2005).