We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/rme.10.3

One of the prospects for a curative treatment for Parkinson’s disease is to replace the lost dopaminergic neurons. Preclinical and clinical trials have demonstrated that dissected fetal dopaminergic neurons have the potential to markedly improve motor function in animal models and Parkinson’s disease patients. However, this source of cells will never be sufficient to use as a widespread therapy. Over the last 20 years, scientists have been searching for other reliable sources of midbrain dopamine neurons, and stem cells appear to be strong candidates. This article reviews the potential of different types of stem cells, from embryonic to adult to induced pluripotent stem cells, to see how well the cells can be differentiated into fully functional dopamine neurons, which cells might be the best candidates and how much more research is required before stem cell technology might be translated to a clinical therapy for Parkinson’s disease.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Lindvall O, Björklund A: Cell therapy in Parkinson’s disease. NeuroRx1,382–393 (2004).
  • Honegger P, Lenoir D, Favrod P: Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium. Nature282,305–308 (1979).
  • Eccleston PA, Gunton DJ, Silberberg DH: Requirements for brain cell attachment, survival and growth in serum-free medium: effects of extracellular matrix, epidermal growth factor and fibroblast growth factor. Dev. Neurosci.7,308–322 (1985).
  • Pulliam L, Berens ME, Rosenblum ML: A normal human brain cell aggregate model for neurobiological studies. J. Neurosci. Res.21,521–530 (1988).
  • Reynolds BA, Tetzlaff W, Weiss S: A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci.12,4565–4574 (1992).▪ Key paper describing the isolation and culture of neural stem cells.
  • Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL: Angiotensin II and interleukin-1 interact to increase generation of dopaminergic neurons from neurospheres of mesencephalic precursors. Brain Res. Dev. Brain Res.158,120–122 (2005).
  • Ling ZD, Potter ED, Lipton JW, Carvey PM: Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol.149,411–423 (1998).
  • Yu Y, Gu S, Huang H, Wen T: Combination of bFGF, heparin and laminin induce the generation of dopaminergic neurons from rat neural stem cells both in vitro and in vivo. J. Neurol. Sci.255,81–86 (2007).
  • Pei Y, He X, Xie Z: Dopaminergic neuron differentiation of ventral mesencephalic progenitors regulated by developmental signals in vitro. NeuroReport14,1567–1570 (2003).
  • 10  Studer L, Csete M, Lee SH et al.: Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci.20,7377–7383 (2000).
  • 11  Rodriguez-Pallares J, Caruncho HJ, Guerra MJ, Labandeira-Garcia JL: Dipyridamole-induced increase in production of rat dopaminergic neurons from mesencephalic precursors. Neurosci. Lett.320,65–68 (2002).
  • 12  Volpicelli F, Consales C, Caiazzo M et al.: Enhancement of dopaminergic differentiation in proliferating midbrain neuroblasts by sonic hedgehog and ascorbic acid. Neural Plast.11,45–57 (2004).
  • 13  Peaire AE, Takeshima T, Johnston JM et al.: Production of dopaminergic neurons for cell therapy in the treatment of Parkinson’s disease. J. Neurosci. Methods124,61–74 (2003).
  • 14  Jin G, Tan X, Tian M et al.: The controlled differentiation of human neural stem cells into TH-immunoreactive (ir) neurons in vitro. Neurosci. Lett.386,105–110 (2005).
  • 15  Roybon L, Hjalt T, Christophersen NS, Li JY, Brundin P: Effects on differentiation of embryonic ventral midbrain progenitors by Lmx1a, Msx1, Ngn2, and Pitx3. J. Neurosci.28,3644–3656 (2008).
  • 16  Spitere K, Toulouse A, O’Sullivan DB, Sullivan AM: TAT-PAX6 protein transduction in neural progenitor cells: a novel approach for generation of dopaminergic neurones in vitro. Brain Res.1208,25–34 (2008).
  • 17  Kim HJ, Sugimori M, Nakafuku M, Svendsen CN: Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp. Neurol.203,394–405 (2007).
  • 18  Andersson EK, Irvin DK, Ahlsio J, Parmar M: Ngn2 and Nurr1 act in synergy to induce midbrain dopaminergic neurons from expanded neural stem and progenitor cells. Exp. Cell Res.313,1172–1180 (2007).
  • 19  O’Keeffe GW, Sullivan AM: Donor age affects differentiation of rat ventral mesencephalic stem cells. Neurosci. Lett.375,101–106 (2005).
  • 20  Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL: Elimination of serotonergic cells induces a marked increase in generation of dopaminergic neurons from mesencephalic precursors. Eur. J. Neurosci.18,2166–2174 (2003).
  • 21  Svendsen CN, Clarke DJ, Rosser AE, Dunnett SB: Survival and differentiation of rat and human EGF responsive precursor cells following grafting into the lesioned adult CNS. Exp. Neurol.137,376–388 (1996).
  • 22  Svendsen CN, Caldwell MA, Shen J et al.: Long term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol.148,135–146 (1997).
  • 23  Liste I, Garcia-Garcia E, Martinez-Serrano A: The generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo. J. Neurosci.24,10786–10795 (2004).
  • 24  Studer L, Tabar V, McKay RDG: Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci.1,290–295 (1998).▪ Most successful study to produce functional dopaminergic neurons compared with previous reports.
  • 25  Parish CL, Castelo-Branco G, Rawal N et al.: Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J. Clin. Invest.118,149–160 (2008).
  • 26  Sun J, Gao Q, Miller K et al.: Dopaminergic differentiation of grafted GFP transgenic neuroepithelial stem cells in the brain of a rat model of Parkinson’s disease. Neurosci. Lett.420,23–28 (2007).
  • 27  Wang X, Lu Y, Zhang H et al.: Distinct efficacy of pre-differentiated versus intact fetal mesencephalon-derived human neural progenitor cells in alleviating rat model of Parkinson’s disease. Int. J. Dev. Neurosci.22,175–183 (2004).
  • 28  Redmond DE Jr, Bjugstad KB, Teng YD et al.: Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc. Natl Acad. Sci. USA104,12175–12180 (2007).
  • 29  Yang M, Donaldson AE, Marshall CE, Shen J, Iacovitti L: Studies on the differentiation of dopaminergic traits in human neural progenitor cells in vitro and in vivo. Cell Transplant.13,535–547 (2004).
  • 30  Balasubramaniyan V, de Haas AH, Bakels R et al.: Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro. Neurosci. Res.49,261–265 (2004).
  • 31  Smith R, Bagga V, Fricker-Gates RA: Embryonic neural progenitor cells: the effects of species, region, and culture conditions on long-term proliferation and neuronal differentiation. J. Hematother. Stem Cell Res.12,713–725 (2003).
  • 32  Brundin P, Bjorklund A: Survival of expanded dopaminergic precursors is critical for clinical trials. Nat. Neurosci.1,537 (1998).▪ Important critique of current limitations in generating large numbers of dopamine neurons from cultured neural progenitors.
  • 33  Christophersen NS, Meijer X, Jorgensen JR et al.: Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain. Brain Res. Bull.70,457–466 (2006).
  • 34  Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature292,154–156 (1981).▪▪ First published report on the generation of embryonic stem cells.
  • 35  Martin GR, Evans MJ: Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl Acad. Sci. USA72,1441–1445 (1975).
  • 36  Rolletschek A, Chang H, Guan K et al.: Differentiation of embryonic stem cell-derived dopaminergic neurons is enhanced by survival-promoting factors. Mech. Dev.105,93–104 (2001).
  • 37  Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD: Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.18,675–679 (2000).
  • 38  Kawasaki H, Mizuseki K, Nishikawa S et al.: Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron28,31–40 (2000).
  • 39  Parmar M, Li M: Early specification of dopaminergic phenotype during ES cell differentiation. BMC Dev. Biol.7,86 (2007).
  • 40  Baier PC, Schindehutte J, Thinyane K et al.: Behavioral changes in unilaterally 6-hydroxy-dopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphological integration. Stem Cells22,396–404 (2004).
  • 41  Kim DW: Efficient induction of dopaminergic neurons from embryonic stem cells for application to Parkinson’s disease. Yonsei Med. J.45(Suppl.),23–27 (2004).
  • 42  Yoshizaki T, Inaji M, Kouike H et al.: Isolation and transplantation of dopaminergic neurons generated from mouse embryonic stem cells. Neurosci. Lett.363,33–37 (2004).
  • 43  Chung S, Shin BS, Hwang M et al.: Neural precursors derived from embryonic stem cells, but not those from fetal ventral mesencephalon, maintain the potential to differentiate into dopaminergic neurons after expansion in vitro. Stem Cells24,1583–1593 (2006).
  • 44  Nishimura F, Yoshikawa M, Kanda S et al.: Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells21,171–180 (2003).
  • 45  Rodriguez-Gomez JA, Lu JQ, Velasco I et al.: Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells25,918–928 (2007).
  • 46  Sonntag KC, Simantov R, Kim KS, Isacson O: Temporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation. Eur. J. Neurosci.19,1141–1152 (2004).
  • 47  Martinat C, Bacci JJ, Leete T et al.: Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc. Natl Acad. Sci. USA103,2874–2879 (2006).
  • 48  Kim JH, Auerbach JM, Rodriguez-Gomez JA et al.: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature418,50–56 (2002).▪▪ One of two seminal publications in 2002 showing embryonic stem cell (ESC)-derived dopaminergic neurons function to restore motor function in a rat model of Parkinson’s disease (PD)
  • 49  Chung S, Hedlund E, Hwang M et al.: The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol. Cell Neurosci.28,241–252 (2005).
  • 50  Hedlund E, Pruszak J, Lardaro T et al.: Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells26,1526–1536 (2008).
  • 51  Friling S, Andersson E, Thompson LH et al.: Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc. Natl Acad. Sci. USA106,7613–7618 (2009).
  • 52  Andersson E, Tryggvason U, Deng Q et al.: Identification of intrinsic determinants of midbrain dopamine neurons. Cell124,393–405 (2006).
  • 53  Chung S, Sonntag K-C, Andersson T et al.: Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur. J. Neurosci.16,1829–1838 (2002).
  • 54  Bjorklund LM, Sanchez-Pernaute R, Chung S et al.: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA99,2344–2349 (2002).▪▪ One of two seminal publications in 2002 showing ESC-derived dopaminergic neurons function to restore motor function in a rat model of PD.
  • 55  Inden M, Kim D, Gu Y et al.: Pharmacological characteristics of rotational behavior in hemiparkinsonian rats transplanted with mouse embryonic stem cell-derived neurons. J. Pharmacol. Sci.96,53–64 (2004).
  • 56  Inden M, Kim DH, Qi M et al.: Transplantation of mouse embryonic stem cell-derived neurons into the striatum, subthalamic nucleus and substantia nigra, and behavioral recovery in hemiparkinsonian rats. Neurosci. Lett.387,151–156 (2005).
  • 57  Takagi Y, Takahashi J, Saiki H et al.: Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest.115,102–109 (2005).
  • 58  Kawasaki H, Suemori H, Mizuseki K et al.: Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl Acad. Sci. USA99,1580–1585 (2002).
  • 59  Ferrari D, Sanchez-Pernaute R, Lee H, Studer L, Isacson O: Transplanted dopamine neurons derived from primate ES cells preferentially innervate DARPP-32 striatal progenitors within the graft. Eur. J. Neurosci.24,1885–1896 (2006).
  • 60  Sanchez-Pernaute R, Lee H, Patterson M et al.: Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson’s disease. Brain131,2127–2139 (2008).
  • 61  Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282,1145–1147 (1998).▪▪ First isolation and generation of human ESCs.
  • 62  Schuldiner M, Eiges R, Eden A et al.: Induced neuronal differentiation of human embryonic stem cells. Brain Res.913,201–205 (2001).
  • 63  Park S, Lee KS, Lee YJ et al.: Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci. Lett.359,99–103 (2004).
  • 64  Yan Y, Yang D, Zarnowska ED et al.: Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells23,781–790 (2005).
  • 65  Geeta R, Ramnath RL, Rao HS, Chandra V: One year survival and significant reversal of motor deficits in parkinsonian rats transplanted with hESC derived dopaminergic neurons. Biochem. Biophys. Res. Commun.373,258–264 (2008).
  • 66  Ben Hur T, Idelson M, Khaner H et al.: Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells22,1246–1255 (2004).
  • 67  Carpenter M, Rao MS, Freed W, Zeng X: Derivation and characterization of neuronal precursors and dopaminergic neurons from human embryonic stem cells in vitro. Methods Mol. Biol.331,153–167 (2006).
  • 68  Chiba S, Lee YM, Zhou W, Freed CR: Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into parkinsonian rats. Stem Cells26,2810–2820 (2008).
  • 69  Park CH, Lee SH: Efficient generation of dopamine neurons from human embryonic stem cells. Methods Mol. Biol.407,311–322 (2007).
  • 70  Ko JY, Park CH, Koh HC et al.: Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons. J. Neurochem.103,1417–1429 (2007).
  • 71  Brederlau A, Correia AS, Anisimov SV et al.: Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells24,1433–1440 (2006).
  • 72  Zeng X, Cai J, Chen J et al.: Dopaminergic differentiation of human embryonic stem cells. Stem Cells22,925–940 (2004).
  • 73  Perrier AL, Tabar V, Barberi T et al.: Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101,12543–12548 (2004).
  • 74  Buytaert-Hoefen KA, Alvarez E, Freed CR: Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells22,669–674 (2004).
  • 75  Song T, Chen G, Wang Y et al.: Chemically defined sequential culture media for TH+ cell derivation from human embryonic stem cells. Mol. Hum. Reprod.14,619–625 (2008).
  • 76  Iacovitti L, Donaldson AE, Marshall CE, Suon S, Yang M: A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: studies in vitro and in vivo. Brain Res.1127,19–25 (2007).
  • 77  Vazin T, Becker KG, Chen J et al.: A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One.4,E6606 (2009).
  • 78  Schulz TC, Noggle SA, Palmarini GM et al.: Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells22,1218–1238 (2004).
  • 79  Sonntag KC, Pruszak J, Yoshizaki T et al.: Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells25,411–418 (2007).
  • 80  Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC: Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells26,55–63 (2008).▪ Reports efficient generation of midbrain-like dopaminergic neurons in vivo and some associated recovery of motor function.
  • 81  Hayashi H, Morizane A, Koyanagi M et al.: Meningeal cells induce dopaminergic neurons from embryonic stem cells. Eur. J. Neurosci.27,261–268 (2008).
  • 82  Shimada H, Yoshimura N, Tsuji A, Kunisada T: Differentiation of dopaminergic neurons from human embryonic stem cells: modulation of differentiation by FGF-20. J. Biosci. Bioeng.107,447–454 (2009).
  • 83  Hong S, Kang UJ, Isacson O et al.: Neural precursors derived from human embryonic stem cells maintain long term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J. Neurochem.104,316–324 (2008).
  • 84  Cho MS, Lee YE, Kim JY et al.: Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA105,3392–3397 (2008).
  • 85  Roy NS, Cleren C, Singh SK et al.: Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med.12,1259–1268 (2006).
  • 86  Ben-Hur T, Idelson M, Khaner H et al.: Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells22,1246–1255 (2004).
  • 87  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126,663–676 (2006).▪▪ Ground-breaking research demonstrating generation of induced pluripotent stem cells showing similar properties to ESCs.
  • 88  Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448,318–324 (2007).
  • 89  Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature448,313–317 (2007).
  • 90  Maherali N, Sridharan R, Xie W et al.: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1,55–70 (2007).
  • 91  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131,861–872 (2007).
  • 92  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318,1917–1920 (2007).
  • 93  Lowry WE, Richter L, Yachechko R et al.: Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA105,2883–2888 (2008).
  • 94  Park IH, Zhao R, West JA et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature451,141–146 (2008).
  • 95  Aasen T, Raya A, Barrero MJ et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26,1276–1284 (2008).
  • 96  Huangfu D, Osafune K, Maehr R et al.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol.26,1269–1275 (2008).
  • 97  Chambers SM, Fasano CA, Papapetrou EP et al.: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol.27,275–280 (2009).
  • 98  Wernig M, Zhao JP, Pruszak J et al.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl Acad. Sci. USA105,5856–5861 (2008).
  • 99  Cai J, Yang M, Poremsky E et al.: Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA lesioned rats. Stem Cells Dev. (2009) (Epub ahead of print).
  • 100  Soldner F, Hockemeyer D, Beard C et al.: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136,964–977 (2009).▪▪ First report of PD patient-derived induced pluripotent stem cells, a major step towards autologous transplants.
  • 101  Kim D, Kim C-H, Moon J-I et al.: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4,472–476 (2009).
  • 102  Zhou H, Wu S, Joo JY et al.: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4,381–384 (2009).
  • 103  Palmer TD, Takahashi J, Gage FH: The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci.8,389–404 (1997).
  • 104  Alvarez-Buylla A, Seri B, Doetsch F: Identification of neural stem cells in the adult vertebrate brain. Brain Res. Bull.57,751–758 (2002).
  • 105  Papanikolaou T, Lennington JB, Betz A et al.: In vitro generation of dopaminergic neurons from adult subventricular zone neural progenitor cells. Stem Cells Dev.17,157–172 (2008).
  • 106  Dziewczapolski G, Lie DC, Ray J, Gage FH, Shults CW: Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats. Exp. Neurol.183,653–664 (2003).
  • 107  Richardson RM, Broaddus WC, Holloway KL, Fillmore HL: Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res.1032,11–22 (2005).
  • 108  Cooper O, Isacson O: Intrastriatal transforming growth factor a delivery to a model of Parkinson’s disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J. Neurosci.24,8924–8931 (2004).
  • 109  Zhao M, Momma S, Delfani K et al.: Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA100,7925–7930 (2003).
  • 110  Shan X, Chi L, Bishop M et al.: Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease-like mice. Stem Cells24,1280–1287 (2006).
  • 111  Frielingsdorf H, Schwarz K, Brundin P, Mohapel P: No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA101,10177–10182 (2004).
  • 112  Lie DC, Dziewczapolski G, Willhoite AR et al.: The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci.22,6639–6649 (2002).
  • 113  Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al.: Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol.164,247–256 (2000).
  • 114  Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR: Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science290,1779–1782 (2000).
  • 115  Brazelton TR, Rossi FM, Keshet GI, Blau HM: From marrow to brain: expression of neuronal phenotypes in adult mice. Science290,1775–1779 (2000).
  • 116  Ying QL, Nichols J, Evans EP, Smith AG: Changing potency by spontaneous fusion. Nature416,545–548 (2002).▪ Important research to challenge the concept of transdifferentiation across lineages.
  • 117  Terada N, Hamazaki T, Oka M et al.: Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416,542–545 (2002).▪ Important research to challenge the concept of transdifferentiation across lineages.
  • 118  Jiang Y, Henderson D, Blackstad M et al.: Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. Natl Acad. Sci. USA100(Suppl. 1),11854–11860 (2003).
  • 119  Trzaska KA, King CC, Li KY et al.: Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J. Neurochem.110,1058–1069 (2009).
  • 120  Trzaska KA, Kuzhikandathil EV, Rameshwar P: Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells25,2797–2808 (2007).
  • 121  Dezawa M, Kanno H, Hoshino M et al.: Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest.113,1701–1710 (2004).
  • 122  Suon S, Yang M, Iacovitti L: Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson’s disease. Brain Res.1106,46–51 (2006).
  • 123  Thompson L, Barraud P, Andersson E, Kirik D, Bjorklund A: Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J. Neurosci.25,6467–6477 (2005).▪ Important finding that midbrain dopaminergic neurons are the subset of neurons in nigral grafts that reconnect with host circuitry and therefore, would be required in a stem cell-derived transplant.
  • 124  Fukuda H, Takahashi J, Watanabe K et al.: Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells24,763–771 (2006).
  • 125  Zhou H, Wu S, Joo JY et al.: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4,381–384 (2009).