We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/rme.10.39

The pace of research on human induced pluripotent stem (iPS) cells is frantic worldwide, based on the enormous therapeutic potential of patient-specific pluripotent cells free of the ethical and political issues that plagued human embryonic stem cell research. iPS cells are now relatively easy to isolate from somatic cells and reprogramming can be accomplished using nonmutagenic technologies. Access to iPS cells is already paying dividends in the form of new disease-in-a-dish models for drug discovery and as scalable sources of cells for toxicology. For translation of cell therapies, the major advantage of iPS cells is that they are autologous, but for many reasons, perfect immunologic tolerance of iPS-based grafts should not be assumed. This article focuses on the functional identity of iPS cells, anticipated safety and technical issues in their application, as well as a survey of the progress likely to be realized in clinical applications in the next decade.

Papers of special note have been highlighted as:▪ of interest ▪▪ of considerable interest

Bibliography

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282(5391),1145–1147 (1998).
  • Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).▪▪ The original description of induced pluripotency came from Yamanaka in Kyoto, Japan, and this Kyoto group has continued to pioneer induced pluripotent stem (iPS) cell technology.
  • Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
  • Muller FJ, Laurent LC, Kostka D et al.: Regulatory networks define phenotypic classes of human stem cell lines. Nature455(7211),401–405 (2008).▪ A systems level understanding of similarities and differences between various pluripotent cell types will require the analysis of large, complex datasets. Here an expression-level signature for pluripotency is defined from an analysis of multiple pluripotent cell lines.
  • Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR: Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One4(9),e7076 (2009).
  • Park I-H, Zhao R, West JA et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature451(7175),141–146 (2008).
  • Chin MH, Mason MJ, Xie W et al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5(1),111–123 (2009).
  • Boland MJ, Hazen JL, Nazor KL et al.: Adult mice generated from induced pluripotent stem cells. Nature461(7260),91–94 (2009).
  • Zhao XY, Li W, Lv Z et al.: iPS cells produce viable mice through tetraploid complementation. Nature461(7260),86–90 (2009).
  • 10  Osafune K, Caron L, Borowiak M et al.: Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol.26(3),313–315 (2008).
  • 11  Izpisua Belmonte JC, Ellis J, Hochedlinger K, Yamanaka S: Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nat. Rev. Genetics10(12),878–883 (2009).
  • 12  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),19177–11920, 2007.
  • 13  Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S: Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell5(3),237–241 (2009).
  • 14  Esteban MA, Wang T, Qin B et al.: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell6(1),71–79 (2009).
  • 15  Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genetics33S,245–254 (2003).
  • 16  Pick M, Stelzer Y, Bar-Nur O, Mayshar Y, Eden A, Benvenisty N: Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells27(11),2686–2690 (2009).
  • 17  Deng J, Shoemaker R, Xie B et al.: Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol.27(4),353–360 (2009).
  • 18  Ball MP, Li JB, Gao Y et al.: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol.27(4),361–368 (2009).
  • 19  Doi A, Park I-H, Wen B et al.: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genetics41(12),1350–1353 (2009).
  • 20  Ram EV, Meshorer E: Transcriptional competence in pluripotency. Genes Dev.23(24),2793–2798 (2009).
  • 21  Xu J, Watts JA, Pope SD et al.: Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev.23(24),2824–2838 (2009).
  • 22  Zhao X, Ruan Y, Wei C-L: Tackling the epigenome in the pluripotent stem cells. J. Genet. Genomics35(7),403–412 (2008).
  • 23  Shih CC, Forman SJ, Chu P, Solvak M: Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev.16(6),893–902 (2007).
  • 24  Miura K, Okada Y, Aoi T et al.: Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol.27(8),743–745 (2009).▪▪ Neurospheres generated from iPS cells were transplanted and followed for teratoma potential. Teratoma propensity varied widely, dependent on the somatic cell origin of the iPS cell.
  • 25  Kazuki Y, Hiratsuka M, Takiguchi M et al.: Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol. Ther.18(2),386–393 (2010).
  • 26  Smuga-Otto K, Tian S, Stewart R et al.: Human induced pluripotent stem cells free of vector and transgene sequences. Science324(5928),797–801 (2009).
  • 27  Kim D, Kim CH, Moon JI et al.: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4(6),472–476 (2009).
  • 28  Zhou H, Wu S, Joo JY et al.: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4(5),381–384 (2009).
  • 29  Li W, Ding S: Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharm. Sci.31(1),36–45 (2010).
  • 30  Kim JB, Greber B, Araúzo-Bravo MJ et al.: Direct reprogramming of human neural stem cells by OCT4. Nature461(7264),649–653 (2009).
  • 31  Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv. Cancer Res.100,133–158 (2008).
  • 32  Utikal J, Polo JM, Stadtfeld M et al.: Immortalization eliminates a roadblock during cellular reprogramming to iPS cells. Nature460(7259),1145–1148 (2009).▪▪ Faster and more efficient reprogramming of somatic cells to iPS cells is enhanced with knockout of p53, with low endogenous p19 protein levels, pointing to the interplay between reprogramming and cell cycle regulation.
  • 33  Hanna J, Saha K, Pando B et al.: Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462(7273),595–601 (2009).
  • 34  Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature448(7151),313–317 (2007).
  • 35  Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151),318–324 (2007).
  • 36  Rossant J: Stem cells: the magic brew. Nature448(7151),260–262 (2007).
  • 37  Covin RB, Ambruso DR, England KM et al.: Hypotension and acute pulmonary insufficiency following transfusion of autologous red blood cells during surgery: a case report and review of the literature. Transfus. Med.14(5),375–383 (2004).
  • 38  Baussaud V, Mentec H, Fourcade C: Hemolysis after autologous transfusion. Ann. Intern. Med.124(10),931–932 (1996).
  • 39  Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME: Definition of human autoimmunity – autoantibodies versus autoimmune disease. Autoimmun. Rev.9(5),A259–A266 (2010).
  • 40  Hanna J, Wernig M, Markoulaki S et al.: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318(5858),1920–1923 (2007).▪▪ Use of iPS cell-derived hematopoietic stem cells (and gene therapy) in a humanized mouse model confirms the therapeutic potential of iPS cells for autologous cell therapies to correct genetic diseases, such as sickle cell disease.
  • 41  Raya A, Rodríguez-Pizà I, Guenechea G et al.: Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature460(7251),53–59 (2009).
  • 42  Xu D, Alipio Z, Fink LM et al.: Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl Acad. Sci. USA106(3),808–813 (2009).
  • 43  Astermark J, Lacroix-Desmazes S, Reding MT: Inhibitor development. Haemophilia14(Suppl. 3),36–42 (2008).
  • 44  Matzner U, Matthes F, Weigelt C et al.: Non-inhibitory antibodies impede lysosomal storage reduction during enzyme replacement therapy of a lysosomal storage disease. J. Mol. Med.86(4),433–442 (2008).
  • 45  Cideciyan AV, Hauswirth WW, Aleman TS et al.: Vision 1 year after gene therapy for Leber’s congenital amaurosis. N. Engl. J. Med.361(7),725–727 (2009).
  • 46  Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA: Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet366(9502),2019–2025 (2005).
  • 47  Park IH, Arora N, Huo H et al.: Disease-specific induced pluripotent stem cells. Cell134(5),877–886 (2008).
  • 48  Dimos JT, Rodolfa KT, Niakan KK et al.: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science321(5893),1218–1221 (2008).
  • 49  Ebert AD, Yu J, Rose FF Jr et al.: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature457(7227),277–280 (2009).
  • 50  Lee G, Papapetrou EP, Kim H et al.: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature461(7262),402–406 (2009).▪ Highlights the importance of iPS cell models of disease for elucidating pathophysiology and as a platform for therapeutic drug screens.
  • 51  Karumbayaram S, Novitch BG, Patterson M et al.: Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells27(4),806–811 (2009).
  • 52  Barber SC, Mead RJ, Shaw PJ: Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochem. Biophys. Acta1762(11–12),1051–1067 (2006).
  • 53  Rothstein JD: Current hypotheses for the underlying biology of amyotropic lateral sclerosis. Ann. Neurol.65(Suppl.),S3–S9 (2009).
  • 54  Blurton-Jones M, Kitazawa M, Martinez-Coria H et al.: Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl Acad. Sci. USA106(32),13594–13599 (2009).
  • 55  Sherer TB, Kim JH, Betarbet R, Greenamyre JT: Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol.179(1),9–16 (2003).
  • 56  Kaitin KI: Obstacles and opportunities in new drug development. Clin. Pharmacol. Ther.83(2),210–212 (2008).
  • 57  So-Tayeb K, Noto FK, Nagaoka M et al.: Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology51(1),297–305 (2010).
  • 58  Sullivan GJ, Hay DC, Park I-H et al.: Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology51(1),329–335 (2010).
  • 59  Song Z, Cai J, Liu Y et al.: Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res.19(11),1233–1242 (2009).
  • 60  Moriguchi H, Chung RT, Sato C: An identification of the novel combination therapy for hepatitis C virus 1b infection by using a replicon system and human induced pluripotent stem cells. Hepatology51(1),351–352 (2010).
  • 61  Tanaka T, Tohyama S, Murata M et al.: In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem. Biophys. Res. Comm.385(4),497–502 (2009).
  • 62  Yokoo N, Baba S, Kaichi S et al.: The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochem. Biophys. Res. Comm.387(3),482–488 (2009).
  • 63  Webb S: The gold rush for pluripotent stem cells. Nature27(11),977–979 (2009).
  • 64  Ahuja YR, Vijayalakshmi V, Polasa K: Stem cell test: a practical tool in toxicogenomics. Toxicology231(1),1–10 (2007).
  • 65  Zarzeczny A, Scott C, Hyun I et al.: iPS cells: mapping the policy issues. Cell139(6),1032–1037 (2009).
  • 66  Condic ML, Rao M: Regulatory issues for personalized pluripotent cells. Stem Cells26(11),2753–2758 (2008).
  • 67  Vrtovec KT, Scott CT: Patenting pluripotence: the next battle for stem cell intellectual property. Nat. Biotechnol.26(4),393–395 (2008).▪ A review of conflicting claims on iPS cell technology that may impact translation of iPS cell-based therapies.
  • 68  Halme DG, Kessler DA: FDA regulation of stem-cell-based therapies. N. Engl. J. Med.355(16),1730–1735 (2006).
  • 69  Taylor DA: From stem cells and cadaveric matrix to engineered organs. Curr. Opin. Biotechnol.20(5),598–605 (2009).
  • 70  Yamanaka S: A fresh look at iPS cells. Cell137(1),13–17 (2009).
  • 71  Kaufman DS: Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood114(17),3513–3523 (2009).
  • 72  Hirami Y, Osakada F, Takahashi K et al.: Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett.458(3),126–131 (2009).
  • 73  Carr AJ, Vugler AA, Hikita ST et al.: Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One4(12),e8152 (2009).
  • 74  Buchholz DE, Hikita ST, Rowland TJ et al.: Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells27(10),2427–2434 (2009).
  • 75  Tezel TH, Del Priore LV, Berger AS, Kaplan HJ: Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am. J. Ophthal.143(4),584–595 (2007).
  • 76  Ameri H, Ratanapakorn T, Ufer S et al.: Toward a wide-field retinal prosthesis. J. Neural Eng.6(3),035002 (2009).
  • 77  Coghlan A: Stem cell eye ‘patch’ to save sight gets a cash boost. New Scientist 24th April (2009).
  • 78  Lu B, Malcuit C, Wang S et al.: Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells27(9),2126–2135.
  • 101  Geron: human embryonic stem cells – derived therapies www.geron.com/patients/clinicaltrials/hESC.aspx
  • 102  Advanced Cell Technology www.advancedcell.com