We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Potential of human induced pluripotent stem cells derived from blood and other postnatal cell types

    Zhaohui Ye

    Division of Hematology & Stem Cell Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Broadway Research Building, Room 747, 733 N. Broadway, Baltimore, MD 21205, USA

    &
    Published Online:https://doi.org/10.2217/rme.10.38

    Human induced pluripotent stem (iPS) cells have been generated from various cell types including blood cells, and offer certain advantages as a starting population for reprogramming postnatal somatic cells. Unlike adult stem cells, iPS cells can proliferate limitlessly in culture while retaining their potential to differentiate into any cell type, including hematopoietic lineages. Derivation of patient-specific iPS cells, in combination with improved hematopoietic differentiation protocols, provides an alternative to generate histocompatible stem cells for bone marrow transplantation. In addition, the ability to reprogram blood cells and redifferentiate iPS cells back to hematopoietic lineages provides opportunities to establish novel models for acquired and inherited blood diseases. This article will summarize recent progress in human iPS cells derived from blood cells and hematopoietic differentiation from iPS cells. Advantages of blood as a source for reprogramming and applications in regenerative medicine will be discussed.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).▪▪ The landmark paper of induced pluripotent stem (iPS) cell generation from somatic cells.
    • Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature448(7151),313–317 (2007).
    • Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151),318–324 (2007).
    • Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).▪▪ One of the first reports on human iPS cell derivation.
    • Yu J, Vodyanik M, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).▪▪ One of the first reports on human iPS cell derivation.
    • Park I, Zhao R, West J et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature451(7175),141–146 (2008).▪▪ One of the first reports on human iPS cell derivation.
    • Lowry W, Richter L, Yachechko R et al.: Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA105(8),2883–2888 (2008).
    • Mali P, Ye Z, Hommond H et al.: Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells26(8),1998–2005 (2008).
    • Huangfu D, Osafune K, Maehr R et al.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol.26(11),1269–1275 (2008).
    • 10  Li W, Zhou H, Abujarour R et al.: Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells27(12),2992–3000 (2009).
    • 11  Kim J, Greber B, Araúzo-Bravo M et al.: Direct reprogramming of human neural stem cells by OCT4. Nature461(7264),649–643 (2009).
    • 12  Giorgetti A, Montserrat N, Aasen T et al.: Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell5(4),353–357 (2009).
    • 13  Yu J, Hu K, Smuga-Otto K et al.: Human induced pluripotent stem cells free of vector and transgene sequences. Science324(5928),797–801 (2009).▪ The first report of virus-free and integration-free human iPS cells.
    • 14  Kim D, Kim C, Moon J et al.: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4(6),472–476 (2009).
    • 15  Woltjen K, Michael I, Mohseni P et al.: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239),766–770 (2009).
    • 16  Yusa K, Rad R, Takeda J, Bradley A: Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods6(5),363–369 (2009).
    • 17  Mali P, Chou B, Yen J et al.: Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells28(4),713–720 (2010).
    • 18  Hanna J, Markoulaki S, Schorderet P et al.: Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell133(2),250–264 (2008).▪▪ A definitive proof on reprogramming of differentiated cell types using mouse B cells.
    • 19  Haase A, Olmer R, Schwanke K et al.: Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell5(4),434–441 (2009).
    • 20  Loh Y, Agarwal S, Park I et al.: Generation of induced pluripotent stem cells from human blood. Blood113(22),5476–5479 (2009).▪▪ The first report of human iPS cell lines generated from blood CD34+ cells after granulocyte colony-stimulating factor mobilization.
    • 21  Ye Z, Zhan H, Mali P et al.: Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood114(27),5473–5480 (2009).▪▪ The first demonstration of iPS cell potential for modeling aquired blood diseases.
    • 22  Takenaka C, Nishishita N, Takada N, Jakt L, Kawamata S: Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Exp. Hematol.38(2),154–162 (2010).
    • 23  Eminli S, Foudi A, Stadtfeld M et al.: Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet.41(9),968–976 (2009).▪ A comprehensive study on reprogramming potentials of different types of mouse hematopoietic cells.
    • 24  Hong H, Takahashi K, Ichisaka T et al.: Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature460(7259),1132–1135 (2009).
    • 25  Kawamura T, Suzuki J, Wang Y et al.: Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature460(7259),1140–1144 (2009).
    • 26  Li H, Collado M, Villasante A et al.: The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature460(7259),1136–1139 (2009).
    • 27  Marión R, Strati K, Li H et al.: A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature460(7259),1149–1153 (2009).
    • 28  Utikal J, Polo J, Stadtfeld M et al.: Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature460(7259),1145–1148 (2009).
    • 29  Banito A, Rashid S, Acosta J et al.: Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev.23(18),2134–2139 (2009).
    • 30  Hanna J, Saha K, Pando B et al.: Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462(7273),595–601 (2009).
    • 31  Bhatia M, Bonnet D, Kapp U, Wang J, Murdoch B, Dick J: Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med.186(4),619–624 (1997).
    • 32  Steen R, Tjønnfjord G, Egeland T: Comparison of the phenotype and clonogenicity of normal CD34+ cells from umbilical cord blood, granulocyte colony-stimulating factor-mobilized peripheral blood, and adult human bone marrow. J. Hematother.3(4),253–262 (1994).
    • 33  Traycoff C, Abboud M, Laver J et al.: Evaluation of the in vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells. Exp. Hematol.22(2),215–222 (1994).
    • 34  Murry C, Keller G: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132(4),661–680 (2008).
    • 35  Orkin S, Zon L: Hematopoiesis: an evolving paradigm for stem cell biology. Cell132(4),631–644 (2008).
    • 36  Qiu C, Hanson E, Olivier E et al.: Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp. Hematol.33(12),1450–1458 (2005).
    • 37  Chang K, Nelson A, Cao H et al.: Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood108(5),1515–1523 (2006).
    • 38  Olivier E, Qiu C, Velho M, Hirsch R, Bouhassira E: Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp. Hematol.34(12),1635–1642 (2006).
    • 39  Lu S, Feng Q, Park J et al.: Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood112(12),4475–4484 (2008).
    • 40  Ma F, Ebihara Y, Umeda K et al.: Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc. Natl Acad. Sci. USA105(35),13087–13092 (2008).
    • 41  Qiu C, Olivier E, Velho M, Bouhassira E: Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood111(4),2400–2408 (2008).
    • 42  Zhan X, Dravid G, Ye Z et al.: Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet364(9429),163–171.
    • 43  Karlsson K, Cowley S, Martinez F, Shaw M, Minger S, James W: Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Exp. Hematol.36(9),1167–1175 (2008).
    • 44  Takayama N, Nishikii H, Usui J et al.: Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood111(11),5298–5306 (2008).
    • 45  Woll P, Grzywacz B, Tian X et al.: Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood113(24),6094–6101 (2009).
    • 46  Kaufman D: Toward clinical therapies utilizing hematopoietic cells derived from human pluripotent stem cells. Blood114,3513–3523 (2009).
    • 47  Hanna J, Wernig M, Markoulaki S et al.: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318(5858),1920–1923 (2007).
    • 48  Kyba M, Perlingeiro R, Daley G: HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell109(1),29–37 (2002).
    • 49  Lengerke C, Grauer M, Niebuhr N et al.: Hematopoietic development from human induced pluripotent stem cells. Ann. NY Acad. Sci.1176,219–227 (2009).
    • 50  Grigoriadis A, Kennedy M, Bozec A et al.: Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood115(14),2769–2776 (2010).
    • 51  Choi K, Vodyanik M, Slukvin I: Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J. Clin. Invest.119(9),2818–2829 (2009).
    • 52  Choi K, Yu J, Smuga-Otto K et al.: Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells27(3),559–567 (2009).
    • 53  Chin M, Mason M, Xie W et al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5(1),111–123 (2009).▪ One of the first gene expression profile studies comparing multiple lines of iPS cells to embryonic stem cells.
    • 54  Marchetto M, Yeo G, Kainohana O, Marsala M, Gage F, Muotri A: Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One4(9),e7076 (2009).
    • 55  Doi A, Park I, Wen B et al.: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet.41(12),1350–1353 (2009).
    • 56  Lister R, Pelizzola M, Dowen R et al.: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462(7271),315–322 (2009).
    • 57  Dimos J, Rodolfa K, Niakan K et al.: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science321(5893),1218–1221 (2008).
    • 58  Park I, Arora N, Huo H et al.: Disease-specific induced pluripotent stem cells. Cell134(5),877–886 (2008).
    • 59  Ebert A, Yu J, Rose FJ et al.: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature457(7227),277–280 (2009).
    • 60  Raya A, Rodríguez-Pizà I, Guenechea G et al.: Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature460(7251),53–59 (2009).
    • 61  Ye L, Chang J, Lin C, Sun X, Yu J, Kan Y: Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc. Natl Acad. Sci. USA106(24),9826–9830 (2009).
    • 62  Wang Y, Jiang Y, Liu S, Sun X, Gao S: Generation of induced pluripotent stem cells from human β-thalassemia fibroblast cells. Cell Res.19(9),1120–1123 (2009).
    • 63  Skoda R: The genetic basis of myeloproliferative disorders. Hematology Am. Soc. Hematol. Educ. Program1–10 (2007).
    • 64  Levine R, Gilliland D: Myeloproliferative disorders. Blood112(6),2190–2198 (2008).
    • 65  Dameshek W: Some speculations on the myeloproliferative syndromes. Blood6(4),372–375 (1951).
    • 66  Baxter E, Scott L, Campbell P et al.: Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet365(9464),1054–1061.
    • 67  James C, Ugo V, Le Couédic J et al.: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature434(7037),1144–1148 (2005).
    • 68  Kralovics R, Passamonti F, Buser A et al.: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med.352(17),1779–1790 (2005).
    • 69  Levine R, Wadleigh M, Cools J et al.: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell7(4),387–397 (2005).
    • 70  Zhao R, Xing S, Li Z et al.: Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem.280(24),22788–22792 (2005).
    • 71  Tefferi A, Lasho T, Gilliland G: JAK2 mutations in myeloproliferative disorders. N. Engl. J. Med.353(13),1416–1417; author reply 1416–1417 (2005).
    • 72  Moliterno A, Williams D, Rogers O, Spivak J: Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood108(12),3913–3915 (2006).
    • 73  Jones A, Kreil S, Zoi K et al.: Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood106(6),2162–2168 (2005).
    • 74  Dupont S, Massé A, James C et al.: The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood110(3),1013–1021 (2007).
    • 75  Scott L, Scott M, Campbell P, Green A: Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood108(7),2435–2437 (2006).
    • 76  Tiedt R, Hao-Shen H, Sobas M et al.: Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood111(8),3931–3940 (2008).
    • 77  Xing S, Wanting T, Zhao W et al.: Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood111(10),5109–5117 (2008).
    • 78  Kralovics R, Stockton D, Prchal J: Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood102(10),3793–3796 (2003).
    • 79  Bellanné-Chantelot C, Chaumarel I et al.: Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood108(1),346–352 (2006).
    • 80  Campbell P, Baxter E, Beer P et al.: Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood108(10),3548–3555 (2006).
    • 81  Kralovics R, Teo S, Li S et al.: Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood108(4),1377–1380 (2006).
    • 82  Levine R, Belisle C, Wadleigh M et al.: X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood107(10),4139–4141 (2006).
    • 83  Pardanani A, Fridley B, Lasho T, Gilliland D, Tefferi A: Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood111(5),2785–2789 (2008).
    • 84  Pietra D, Li S, Brisci A et al.: Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood111(3),1686–1689 (2008).
    • 85  Kiladjian J, Elkassar N, Cassinat B et al.: Essential thrombocythemias without V617F JAK2 mutation are clonal hematopoietic stem cell disorders. Leukemia20(6),1181–1183 (2006).
    • 86  Kilpivaara O, Mukherjee S, Schram A et al.: A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat. Genet.41(4),455–459 (2009).
    • 87  Olcaydu D, Harutyunyan A, Jäger R: A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet.41(4),450–454 (2009).
    • 88  Jones A, Chase A, Silver R et al.: JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet.41(4),446–449 (2009).
    • 89  Wernig G, Mercher T, Okabe R, Levine R, Lee B, Gilliland D: Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood107(11),4274–4281 (2006).
    • 90  Lacout C, Pisani D, Tulliez M, Gachelin F, Vainchenker W, Villeval J: JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood108(5),1652–1660 (2006).
    • 91  Zaleskas V, Krause D, Lazarides K et al.: Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One1,e18 (2006).
    • 92  Zou J, Maeder M, Mali P et al.: Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell5(1),97–110 (2009).▪▪ The first report of gene targeting in human iPS cells.
    • 93  D’Andrea A, Grompe M: The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer3(1),23–34 (2003).
    • 94  Tischkowitz M, Dokal I: Fanconi anaemia and leukaemia – clinical and molecular aspects. Br. J. Haematol.126(2),176–191 (2004).
    • 95  Parmar K, D’Andrea A, Niedernhofer L: Mouse models of Fanconi anemia. Mutat. Res.668(1–2),133–140 (2009).
    • 96  Tulpule A, Lensch M, Miller J et al.: Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood115(17),3453–3462 (2010).