We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/rme.10.35

Embryonic stem cells have the unique ability to indefinitely self-renew and differentiate into any cell type found in the adult body. Differentiated cells can, in turn, be reprogrammed to embryonic stem-like induced pluripotent stem cells, providing exciting opportunities for achieving patient-specific stem cell therapy while circumventing immunological obstacles and ethical controversies. Since both differentiation and reprogramming are governed by major changes in the epigenome, current directions in the field aim to uncover the epigenetic signals that give pluripotent cells their unique properties. DNA methylation is one of the major epigenetic factors that regulates gene expression in mammals and is essential for establishing cellular identity. Recent analyses of pluripotent and somatic cell methylomes have provided important insights into the extensive role of DNA methylation during cell-fate commitment and reprogramming. In this article, the recent progress of differentiation and reprogramming research illuminated by high-throughput studies is discussed in the context of DNA methylation.

Papers of special note have been highlighted as: ▪ of interest ▪ of considerable interest

Bibliography

  • Wu C, Morris JR: Genes, genetics, and epigenetics: a correspondence. Science293(5532),1103–1105 (2001).
  • Reik W: Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447(7143),425–432 (2007).
  • Miranda TB, Jones PA: DNA methylation: the nuts and bolts of repression. J. Cell. Physiol.213(2),384–390 (2007).
  • Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for De novo methylation and mammalian development. Cell99(3),247–257 (1999).▪ First in vivo loss-of-function study of de novo methyltransferases, establishing the critical role of methylation for development.
  • Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69(6),915–926 (1992).▪▪ First in vivo loss-of-function study of major methyltransferase, Dnmt1, establishing the critical role of methylation for development.
  • Leonhardt H, Page AW, Weier HU, Bestor TH: A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell71(5),865–873 (1992).
  • Liu Y, Oakeley EJ, Sun L, Jost JP: Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res.26(4),1038–1045 (1998).
  • Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S: Co-operation and communication between the human maintenance and De novo DNA (cytosine-5) methyltransferases. EMBO J.21(15),4183–4195 (2002).
  • Chen T, Ueda Y, Dodge JE, Wang Z, Li E: Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol.23(16),5594–5605 (2003).▪ Demonstrates partial redundant roles of DNA methylation between the methyltransferases in embryonic stem cells (ESCs).
  • 10  Hattori N, Abe T, Suzuki M et al.: Preference of DNA methyltransferases for CpG islands in mouse embryonic stem cells. Genome Res.14(9),1733–1740 (2004).
  • 11  Feng J, Zhou Y, Campbell SL et al.: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci.13(4),423–430 (2010).▪ Demonstrates overlapping function of DNA methyltransferases in postmitotic neurons.
  • 12  Hochedlinger K, Plath K: Epigenetic reprogramming and induced pluripotency. Development136(4),509–523 (2009).
  • 13  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).
  • 14  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
  • 15  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science (New York)318(5858),1917–1920 (2007).
  • 16  Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6),415–428 (2002).
  • 17  Gardiner-Garden M, Frommer M: Cpg islands in vertebrate genomes. J. Mol. Biol.196(2),261–282 (1987).
  • 18  Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99(6),3740–3745 (2002).
  • 19  Meissner A, Mikkelsen TS, Gu H et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454(7205),766–770 (2008).▪ Genomic map of both DNA methylation and histone markers.
  • 20  Mohn F, Weber M, Rebhan M et al.: Lineage-specific polycomb targets and De novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell30(6),755–766 (2008).
  • 21  Fouse SD, Shen Y, Pellegrini M et al.: Promoter Cpg methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell2(2),160–169 (2008).▪ Genomic map of both DNA methylation and histone markers.
  • 22  Weber M, Hellmann I, Stadler MB et al.: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet.39(4),457–466 (2007).
  • 23  Ball MP, Li JB, Gao Y et al.: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol.27(4),361–368 (2009).
  • 24  Saxonov S, Berg P, Brutlag DL: A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA103(5),1412–1417 (2006).
  • 25  Mikkelsen TS, Ku M, Jaffe DB et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448(7153),553–560 (2007).
  • 26  Suzuki MM, Bird A: DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev.9(6),465–476 (2008).
  • 27  Hellman A, Chess A: Gene body-specific methylation on the active X chromosome. Science315(5815),1141–1143 (2007).
  • 28  Deng J, Shoemaker R, Xie B et al.: Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol.27(4),353–360 (2009).
  • 29  Lister R, Pelizzola M, Dowen RH et al.: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462(7271),315–322 (2009).▪▪ Detailed methylation map by deep genome-wide bisulfite sequencing in ESCs and fibroblast cells with cross reference to various histone ChIP-seq experiments.
  • 30  Laurent L, Wong E, Li G et al.: Dynamic changes in the human methylome during differentiation. Genome Res.20(3),320–331 (2010).
  • 31  Straussman R, Nejman D, Roberts D et al.: Developmental programming of CpG island methylation profiles in the human genome. Nat. Struct. Mol. Biol.16(5),564–571 (2009).
  • 32  Xu J, Watts JA, Pope SD et al.: Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev.23(24),2824–2838 (2009).
  • 33  Ooi SK, Qiu C, Bernstein E et al.: Dnmt3l connects unmethylated lysine 4 of histone H3 to De novo methylation of DNA. Nature448(7154),714–717 (2007).
  • 34  Oswald J, Engemann S, Lane N et al.: Active demethylation of the paternal genome in the mouse zygote. Curr. Biol.10(8),475–478 (2000).
  • 35  Mayer W, Niveleau A, Walter J, Fundele R, Haaf T: Demethylation of the zygotic paternal genome. Nature403(6769),501–502 (2000).
  • 36  Rougier N, Bourc’his D, Gomes DM et al.: Chromosome methylation patterns during mammalian preimplantation development. Genes Dev.12(14),2108–2113 (1998).
  • 37  Santos F, Hendrich B, Reik W, Dean W: Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241(1),172–182 (2002).
  • 38  Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y: A role for the elongator complex in zygotic paternal genome demethylation. Nature463(7280),554–558 (2010).▪ First implication of transcription elongator components in active paternal demethylation.
  • 39  Carlson LL, Page AW, Bestor TH: Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev.6(12B),2536–2541 (1992).
  • 40  Cardoso MC, Leonhardt H: DNA methyltransferase is actively retained in the cytoplasm during early development. J. Cell Biol.147(1),25–32 (1999).
  • 41  Mayer W, Fundele R, Haaf T: Spatial separation of parental genomes during mouse interspecific (Mus musculus x M. spretus) spermiogenesis. Chromosome Res.8(6),555–558 (2000).
  • 42  Kwon GS, Viotti M, Hadjantonakis AK: The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell15(4),509–520 (2008).
  • 43  Ng RK, Dean W, Dawson C et al.: Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell. Biol.10(11),1280–1290 (2008).▪▪ Demonstrates that DNA methylation is critical for earliest cell-fate commitment.
  • 44  Donnison M, Beaton A, Davey HW, Broadhurst R, L’huillier P, Pfeffer PL: Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development132(10),2299–2308 (2005).
  • 45  Hirasawa R, Sasaki H: Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos. Gene Expr. Patterns9(1),27–30 (2009).
  • 46  Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282(5391),1145–1147 (1998).
  • 47  Tucker KL, Beard C, Dausmann J et al.: Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev.10(8),1008–1020 (1996).
  • 48  Tsumura A, Hayakawa T, Kumaki Y et al.: Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells11(7),805–814 (2006).
  • 49  Jackson M, Krassowska A, Gilbert N et al.: Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol. Cell. Biol.24(20),8862–8871 (2004).
  • 50  Carlone DL, Lee JH, Young SR et al.: Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol. Cell. Biol.25(12),4881–4891 (2005).
  • 51  Farthing CR, Ficz G, Ng RK et al.: Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet.4(6),e1000116 (2008).
  • 52  Brandeis M, Frank D, Keshet I et al.: Sp1 elements protect a CpG island from De novo methylation. Nature371(6496),435–438 (1994).
  • 53  Gidekel S, Bergman Y: A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J. Biol. Chem.277(37),34521–34530 (2002).
  • 54  Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA97(10),5237–5242 (2000).▪ Early study identifying enrichment of non-CpG methylation in mouse ESCs.
  • 55  Gowher H, Jeltsch A: Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J. Mol. Biol.309(5),1201–1208 (2001).
  • 56  Dodge JE, Ramsahoye BH, Wo ZG, Okano M, Li E: De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene289(1–2),41–48 (2002).
  • 57  White GP, Watt PM, Holt BJ, Holt PG: Differential patterns of methylation of the IFN-γ promoter at CpG and non-CpG sites underlie differences in IFN-γ gene expression between human neonatal and adult CD45ro- T cells. J. Immunol.168(6),2820–2827 (2002).
  • 58  Suetake I, Miyazaki J, Murakami C, Takeshima H, Tajima S: Distinct enzymatic properties of recombinant mouse DNA methyltransferases Dnmt3a and Dnmt3b. J. Biochem.133(6),737–744 (2003).
  • 59  Barres R, Osler Me, Yan J et al.: Non-CpG methylation of the pgc-1α promoter through Dnmt3b controls mitochondrial density. Cell Metab.10(3),189–198 (2009).
  • 60  Biniszkiewicz D, Gribnau J, Ramsahoye B et al.: Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol.22(7),2124–2135 (2002).
  • 61  Broske AM, Vockentanz L, Kharazi S et al.: DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet.41(11),1207–1215 (2009).
  • 62  Trowbridge JJ, Snow JW, Kim J, Orkin SH: DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell5(4),442–449 (2009).
  • 63  Takizawa T, Nakashima K, Namihira M et al.: DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell1(6),749–758 (2001).
  • 64  Fan G, Martinowich K, Chin MH et al.: DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development132(15),3345–3356 (2005).
  • 65  Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA: Dnmt1 maintains progenitor function in self-renewing somatic tissue. Nature463(7280),563–567 (2010).
  • 66  Pittenger MF, Mackay AM, Beck SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science284(5411),143–147 (1999).
  • 67  Zuk PA, Zhu M, Mizuno H et al.: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7(2),211–228 (2001).
  • 68  Boquest AC, Shahdadfar A, Fronsdal K et al.: Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol. Biol. Cell16(3),1131–1141 (2005).
  • 69  Noer A, Sorensen AL, Boquest AC, Collas P: Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol. Biol. Cell17(8),3543–3556 (2006).
  • 70  Sorensen AL, Timoskainen S, West FD et al.: Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells Dev. (2009) (Epub ahead of print).
  • 71  Josephson R, Ording CJ, Liu Y et al.: Qualification of embryonal carcinoma 2102ep as a reference for human embryonic stem cell research. Stem Cells25(2),437–446 (2007).
  • 72  Aranda P, Agirre X, Ballestar E et al.: Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PloS ONE4(11),e7809 (2009).
  • 73  Attema JL, Papathanasiou P, Forsberg EC, Xu J, Smale ST, Weissman IL: Epigenetic characterization of hematopoietic stem cell differentiation using minichip and bisulfite sequencing analysis. Proc. Natl Acad. Sci. USA104(30),12371–12376 (2007).
  • 74  Xu J, Pope SD, Jazirehi AR et al.: Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc. Natl Acad. Sci. USA104(30),12377–12382 (2007).
  • 75  Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H: De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J. Exp. Med.204(4),715–722 (2007).
  • 76  Temple S: Stem cell plasticity – building the brain of our dreams. Nat. Rev. Neurosci.2(7),513–520 (2001).
  • 77  Shen Y, Chow J, Wang Z, Fan G: Abnormal CpG island methylation occurs during in vitro differentiation of human embryonic stem cells. Human Mol. Genet.15(17),2623–2635 (2006).
  • 78  Hemberger M, Dean W, Reik W: Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat. Rev.10(8),526–537 (2009).
  • 79  Hajkova P, Ancelin K, Waldmann T et al.: Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature452(7189),877–881 (2008).
  • 80  Popp C, Dean W, Feng S et al.: Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature463(7284),1101–1105 (2010).
  • 81  Surani MA, Durcova-Hills G, Hajkova P, Hayashi K, Tee WW: Germ line, stem cells, and epigenetic reprogramming. Cold Spring Harb. Symp. Quant. Biol.73,9–15 (2008).
  • 82  Eckhardt F, Lewin J, Cortese R et al.: DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet.38(12),1378–1385 (2006).
  • 83  Schilling E, Rehli M: Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics90(3),314–323 (2007).
  • 84  Illingworth R, Kerr A, Desousa D et al.: A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol.6(1),e22 (2008).
  • 85  Rakyan VK, Down TA, Thorne NP et al.: An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res.18(9),1518–1529 (2008).
  • 86  Song F, Mahmood S, Ghosh S et al.: Tissue specific differentially methylated regions (TDMR): changes in DNA methylation during development. Genomics93(2),130–139 (2009).
  • 87  Doi A, Park IH, Wen B et al.: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet.41(12),1350–1353 (2009).▪ Compares methylation signatures distinguishing ESCs from induced pluripotent stem cells.
  • 88  Maherali N, Sridharan R, Xie W et al.: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1(1),55–70 (2007).
  • 89  Mikkelsen TS, Hanna J, Zhang X et al.: Dissecting direct reprogramming through integrative genomic analysis. Nature454(7200),49–55 (2008).▪ First study demonstrating 5-aza-cytidine treatment improves reprogramming efficiencies.
  • 90  Ichida JK, Blanchard J, Lam K et al.: A small-molecule inhibitor of TGF-β signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell5(5),491–503 (2009).
  • 91  Zhu JK: Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet.43,143–166 (2009).
  • 92  Ma DK, Jang MH, Guo JU et al.: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science323(5917),1074–1077 (2009).
  • 93  Barreto G, Schafer A, Marhold J et al.: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature445(7128),671–675 (2007).
  • 94  Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK: Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem.279(50),52353–52360 (2004).
  • 95  Jin SG, Guo C, Pfeifer GP: GADD45A does not promote DNA demethylation. PLoS Genet.4(3),e1000013 (2008).
  • 96  Metivier R, Gallais R, Tiffoche C et al.: Cyclical DNA methylation of a transcriptionally active promoter. Nature452(7183),45–50 (2008).
  • 97  Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM: Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature463(7284),1042–1047 (2009).▪ First study demonstrating contribution of active demethylation in reprogramming.
  • 98  Chin MH, Mason MJ, Xie W et al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5(1),111–123 (2009).
  • 99  Bibikova M, Chudin E, Wu B et al.: Human embryonic stem cells have a unique epigenetic signature. Genome Res.16(9),1075–1083 (2006).
  • 100  Allegrucci C, Wu YZ, Thurston A et al.: Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Human Mol. Genet.16(10),1253–1268 (2007).
  • 101  Maitra A, Arking DE, Shivapurkar N et al.: Genomic alterations in cultured human embryonic stem cells. Nat. Genet.37(10),1099–1103 (2005).
  • 102  Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA: Epigenetic status of human embryonic stem cells. Nat. Genet.37(6),585–587 (2005).
  • 103  Aasen T, Raya A, Barrero MJ et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26(11),1276–1284 (2008).
  • 104  Choi SC, Yoon J, Shim WJ, Ro YM, Lim DS: 5-azacytidine induces cardiac differentiation of p19 embryonic stem cells. Exp. Mol. Med.36(6),515–523 (2004).
  • 105  Huangfu D, Osafune K, Maehr R et al.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol.26(11),1269–1275 (2008).
  • 106  Huangfu D, Maehr R, Guo W et al.: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26(7),795–797 (2008).
  • 107  Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell3(5),568–574 (2008).
  • 108  Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S: A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell2(6),525–528 (2008).
  • 109  Kohyama J, Abe H, Shimazaki T et al.: Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with noggin or a demethylating agent. Differentiation68(4–5),235–244 (2001).
  • 110  Woodbury D, Reynolds K, Black IB: Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res.69(6),908–917 (2002).
  • 111  Bibikova M, Laurent LC, Ren B, Loring JF, Fan JB: Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell2(2),123–134 (2008).
  • 112  Ramirez-Carrozzi VR, Braas D, Bhatt DM et al.: A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell138(1),114–128 (2009).
  • 113  Pietersen AM, Van Lohuizen M: Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol.20(2),201–207 (2008).
  • 114  Tahiliani M, Koh KP, Shen Y et al.: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324(5929),930–935 (2009).
  • 115  Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324(5929),929–930 (2009).
  • 116  Loenarz C, Schofield CJ: Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chem. Biol.4(3),152–156 (2008).