We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

miRNA in pluripotent stem cells

    Uma Lakshmipathy

    † Author for correspondence

    WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA

    ,
    Jonathan Davila

    WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA

    &
    Ronald P Hart

    WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA

    Published Online:https://doi.org/10.2217/rme.10.34

    Embryonic stem cells and induced pluripotent stem cells are characterized by their ability to self-renew and differentiate into any cell type. The molecular mechanism behind this process is a complex interplay between the transcriptional factors with epigenetic regulators and signaling pathways. miRNAs are an integral part of this regulatory network, with essential roles in pluripotent maintenance, proliferation and differentiation. miRNAs are a class of small noncoding RNAs that target protein-encoding mRNA to inhibit translation and protein synthesis. Discovered close to 20 years ago, miRNAs have rapidly emerged as key regulatory molecules in several critical cellular processes across species. Recent studies have begun to clarify the specific role of miRNA in regulatory circuitries that control self-renewal and pluripotency of both embryonic stem cells and induced pluripotent stem cells. These advances suggest a critical role for miRNAs in the process of reprogramming somatic cells to pluripotent cells.

    Bibliography

    • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282(5391),1145–1147 (1998).
    • Choumerianou DM, Dimitriou H, Kalmanti M: Stem cells: promises versus limitations. Tissue Eng.14(1),53–60 (2008).
    • Aoi T, Yae K, Nakagawa M et al.: Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321(5889),699–702 (2008).
    • Takahashi K, Okita K, Nakagawa M, Yamanaka S: Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc.2(12),3081–3089 (2007).
    • Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • Nakagawa M, Koyanagi M, Tanabe K et al.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26(1),101–106 (2008).
    • Park IH, Zhao R, West JA et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature451(7175),141–146 (2008).
    • Maherali N, Sridharan R, Xie W et al.: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1(1),55–70 (2007).
    • Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • 10  Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151),318–324 (2007).
    • 11  Muller R, Lengerke C: Patient-specific pluripotent stem cells: promises and challenges. Nat. Rev. Endocrinol.5(4),195–203 (2009).
    • 12  Lengerke C, Daley GQ: Disease models from pluripotent stem cells. Ann. NY Acad. Sci.1176,191–196 (2009).
    • 13  Lengerke C, Daley GQ: Autologous blood cell therapies from pluripotent stem cells. Blood Rev.24(1),27–37 (2000).
    • 14  Chen X, Xu H, Yuan P et al.: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133(6),1106–1117 (2008).
    • 15  Boyer LA, Lee TI, Cole MF et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122(6),947–956 (2005).
    • 16  Jaenisch R, Young R: Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell132(4),567–582 (2008).
    • 17  Chen L, Daley GQ: Molecular basis of pluripotency. Human Mol. Genet.17(R1),R23–R27 (2008).
    • 18  Loh YH, Wu Q, Chew JL et al.: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet.38(4),431–440 (2006).
    • 19  Lee TI, Jenner RG, Boyer LA et al.: Control of developmental regulators by polycomb in human embryonic stem cells. Cell125(2),301–313 (2006).
    • 20  Lagarkova MA, Volchkov PY, Lyakisheva AV, Philonenko ES, Kiselev SL: Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle5(4),416–420 (2006).
    • 21  Yeo S, Jeong S, Kim J, Han JS, Han YM, Kang YK: Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun.359(3),536–542 (2007).
    • 22  Fouse SD, Shen Y, Pellegrini M et al.: Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell2(2),160–169 (2008).
    • 23  Mohn F, Weber M, Rebhan M et al.: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell30(6),755–766 (2008).
    • 24  Tolia NH, Joshua-Tor L: Slicer and the argonautes. Nat. Chem. Biol.3(1),36–43 (2007).
    • 25  Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev. Cell11(4),441–450 (2006).
    • 26  Kato M, Slack FJ: MicroRNAs: small molecules with big roles – C. elegans to human cancer. Biol. Cell100(2),71–81 (2008).
    • 27  Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat. Rev.9(3),219–230 (2008).
    • 28  Zeng Y, Yi R, Cullen BR: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J.24(1),138–148 (2005).
    • 29  Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN: The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev.18(24),3016–3027 (2004).
    • 30  Zeng Y, Cullen BR: Structural requirements for pre-microRNA binding and nuclear export by exportin 5. Nucleic Acids Res.32(16),4776–4785 (2004).
    • 31  Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2),281–297 (2004).
    • 32  Carrington JC, Ambros V: Role of microRNAs in plant and animal development. Science301(5631),336–338 (2003).
    • 33  Dykxhoorn DM, Novina CD, Sharp PA: Killing the messenger: short RNAs that silence gene expression. Nat. Rev.4(6),457–467 (2003).
    • 34  Pickford AS, Cogoni C: RNA-mediated gene silencing. Cell. Mol. Life Sci.60(5),871–882 (2003).
    • 35  Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science318(5858),1931–1934 (2007).
    • 36  Okamura K, Lai EC: Endogenous small interfering RNAs in animals. Nat. Rev.9(9),673–678 (2008).
    • 37  Lin H, Yin H: A novel epigenetic mechanism in Drosophila somatic cells mediated by Piwi and piRNAs. Cold Spring Harb. Symp. Quant. Biol.73,273–281 (2008).
    • 38  Thomson T, Lin H: The biogenesis and function of Piwi proteins and piRNAs: progress and prospect. Ann. Rev. Cell Dev. Biol.25,355–376 (2009).
    • 39  Yin H, Lin H: An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature450(7167),304–308 (2007).
    • 40  Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res.19(1),92–105 (2009).
    • 41  John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human microRNA targets. PLoS Biol.2(11),e363 (2004).
    • 42  Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: Mirbase: tools for microRNA genomics. Nucleic Acids Res.36(Database issue),D154–D158 (2008).
    • 43  Sethupathy P, Megraw M, Hatzigeorgiou AG: A guide through present computational approaches for the identification of mammalian microRNA targets. Nat. Methods3(11),881–886 (2006).
    • 44  Aravin A, Tuschl T: Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett.579(26),5830–5840 (2005).
    • 45  Lakshmipathy U, Hart RP: Concise review: microRNA expression in multipotent mesenchymal stromal cells. Stem Cells26(2),356–363 (2008).
    • 46  Li W, Ruan K: MicroRNA detection by microarray. Anal. Bioanal. Chem.394(4),1117–1124 (2009).
    • 47  Creighton CJ, Reid JG, Gunaratne PH: Expression profiling of microRNAs by deep sequencing. Brief Bioinform.10(5),490–497 (2009).
    • 48  Linsen SE, de Wit E, Janssens G et al.: Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods6(7),474–476 (2009).
    • 49  Goff LA, Davila J, Swerdel MR et al.: Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS ONE4(9),e7192 (2009).
    • 50  Houbaviy HB, Murray MF, Sharp PA: Embryonic stem cell-specific microRNAs. Dev. Cell5(2),351–358 (2003).
    • 51  Suh MR, Lee Y, Kim JY et al.: Human embryonic stem cells express a unique set of microRNAs. Dev. Biol.270(2),488–498 (2004).
    • 52  Bar M, Wyman SK, Fritz BR et al.: MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells26(10),2496–2505 (2008).
    • 53  Morin RD, O’Connor MD, Griffith M et al.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res.18(4),610–621 (2008).
    • 54  Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34(Database issue),D140–D144 (2006).
    • 55  Friedlander MR, Chen W, Adamidi C et al.: Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol.26(4),407–415 (2008).
    • 56  Nonne N, Ameyar-Zazoua M, Souidi M, Harel-Bellan A: Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res.38(4),e20 (2000).
    • 57  Jensen KB, Darnell RB: CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol. Biol.488,85–98 (2008).
    • 58  Licatalosi DD, Mele A, Fak JJ et al.: HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature456(7221),464–469 (2008).
    • 59  Chi SW, Zang JB, Mele A, Darnell RB: Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature460(7254),479–486 (2009).
    • 60  Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB: Proliferating cells express mRNAs with shortened 3´ untranslated regions and fewer microRNA target sites. Science320(5883),1643–1647 (2008).
    • 61  Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ: Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci USA102(34),12135–12140 (2005).
    • 62  Bernstein E, Kim SY, Carmell MA et al.: Dicer is essential for mouse development. Nat. Genet.35(3),215–217 (2003).
    • 63  Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H: Stem cell division is regulated by the microRNA pathway. Nature435(7044),974–978 (2005).
    • 64  Kanellopoulou C, Muljo SA, Kung AL et al.: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19(4),489–501 (2005).
    • 65  Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Gen.39(3),380–385 (2007).
    • 66  Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH: The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet.35(3),217–218 (2003).
    • 67  Nimmo RA, Slack FJ: An elegant mirror: microRNAs in stem cells, developmental timing and cancer. Chromosoma118(4),405–418 (2009).
    • 68  Benetti R, Gonzalo S, Jaco I et al.: A mammalian microRNA cluster controls DNA methylation and telomere recombination via RBL2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol.15(3),268–279 (2008).
    • 69  Sinkkonen L, Hugenschmidt T, Berninger P et al.: MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol.15(3),259–267 (2008).
    • 70  Calabrese JM, Seila AC, Yeo GW, Sharp PA: RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc. Natl Acad. Sci USA104(46),18097–18102 (2007).
    • 71  Bodnar MS, Meneses JJ, Rodriguez RT, Firpo MT: Propagation and maintenance of undifferentiated human embryonic stem cells. Stem Cells Dev.13(3),243–253 (2004).
    • 72  Keller G: Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev.19(10),1129–1155 (2005).
    • 73  Menendez P, Bueno C, Wang L: Human embryonic stem cells: a journey beyond cell replacement therapies. Cytotherapy8(6),530–541 (2006).
    • 74  Melton C, Judson RL, Blelloch R: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature463(7281),621–626 (2000).
    • 75  Wang Y, Blelloch R: Cell cycle regulation by microRNAs in embryonic stem cells. Cancer Res.69(10),4093–4096 (2009).
    • 76  Lakshmipathy U, Love B, Goff LA et al.: MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev.16(6),1003–1016 (2007).
    • 77  Strauss WM, Chen C, Lee CT, Ridzon D: Nonrestrictive developmental regulation of microRNA gene expression. Mamm. Genome17(8),833–840 (2006).
    • 78  Laurent LC, Chen J, Ulitsky I et al.: Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells26(6),1506–1516 (2008).
    • 79  Josephson R, Ording CJ, Liu Y et al.: Qualification of embryonal carcinoma 2102EP as a reference for human embryonic stem cell research. Stem Cells25(2),437–446 (2007).
    • 80  Ambros V, Chen X: The regulation of genes and genomes by small RNAs. Development134(9),1635–1641 (2007).
    • 81  Marson A, Levine SS, Cole MF et al.: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134(3),521–533 (2008).
    • 82  Hayashi K, Chuva de Sousa Lopes SM, Kaneda M et al.: MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE3(3),e1738 (2008).
    • 83  Voorhoeve PM: MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim. Biophys. Acta1805(1),72–86 (2009).
    • 84  Voorhoeve PM, le Sage C, Schrier M et al.: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell124(6),1169–1181 (2006).
    • 85  Duale N, Lindeman B, Komada M et al.: Molecular portrait of cisplatin induced response in human testis cancer cell lines based on gene expression profiles. Mol. Cancer6,53 (2007).
    • 86  Huang Q, Gumireddy K, Schrier M et al.: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol.10(2),202–210 (2008).
    • 87  Landgraf P, Rusu M, Sheridan R et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell129(7),1401–1414 (2007).
    • 88  Barroso-del Jesus A, Romero-Lopez C, Lucena-Aguilar G et al.: Embryonic stem cell-specific miR302–367 cluster: human gene structure and functional characterization of its core promoter. Mol. Cell. Biol.28(21),6609–6619 (2008).
    • 89  Card DA, Hebbar PB, Li L et al.: Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell. Biol.28(20),6426–6438 (2008).
    • 90  Barroso-del Jesus A, Lucena-Aguilar G, Menendez P: The miR-302–367 cluster as a potential stemness regulator in ESCs. Cell Cycle8(3),394–398 (2009).
    • 91  Gu P, Reid JG, Gao X et al.: Novel microRNA candidates and miRNA–mRNA pairs in embryonic stem (ES) cells. PLoS ONE3(7),e2548 (2008).
    • 92  Hayashita Y, Osada H, Tatematsu Y et al.: A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res.65(21),9628–9632 (2005).
    • 93  Venturini L, Battmer K, Castoldi M et al.: Expression of the miR-17–92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood109(10),4399–4405 (2007).
    • 94  Kutay H, Bai S, Datta J et al.: Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J. Cell. Biochem.99(3),671–678 (2006).
    • 95  Rinaldi A, Poretti G, Kwee I et al.: Concomitant Myc and microRNA cluster miR-17–92 (C13orf25) amplification in human mantle cell lymphoma. Leuk. Lymphoma48(2),410–412 (2007).
    • 96  O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature435(7043),839–843 (2005).
    • 97  Chang TC, Yu D, Lee YS et al.: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet.40(1),43–50 (2008).
    • 98  Sylvestre Y, De Guire V, Querido E et al.: An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem.282(4),2135–2143 (2007).
    • 99  Woods K, Thomson JM, Hammond SM: Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J. Biol. Chem.282(4),2130–2134 (2007).
    • 100  Trimarchi JM, Lees JA: Sibling rivalry in the E2F family. Nat. Rev.3(1),11–20 (2002).
    • 101  Yu F, Yao H, Zhu P et al.: Let-7 regulates self-renewal and tumorigenicity of breast cancer cells. Cell131(6),1109–1123 (2007).
    • 102  Takamizawa J, Konishi H, Yanagisawa K et al.: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.64(11),3753–3756 (2004).
    • 103  Akao Y, Nakagawa Y, Naoe T: Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol. Pharm. Bull.29(5),903–906 (2006).
    • 104  Calin GA, Sevignani C, Dumitru CD et al.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101(9),2999–3004 (2004).
    • 105  Lee EJ, Gusev Y, Jiang J et al.: Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer120(5),1046–1054 (2007).
    • 106  Szafranska AE, Davison TS, John J et al.: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene26(30),4442–4452 (2007).
    • 107  Esquela-Kerscher A, Trang P, Wiggins JF et al.: The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle7(6),759–764 (2008).
    • 108  Kumar MS, Erkeland SJ, Pester RE et al.: Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl Acad. Sci. USA105(10),3903–3908 (2008).
    • 109  Viswanathan SR, Daley GQ, Gregory RI: Selective blockade of microRNA processing by Lin28. Science320(5872),97–100 (2008).
    • 110  Rybak A, Fuchs H, Smirnova L et al.: A feedback loop comprising Lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol.10(8),987–993 (2008).
    • 111  Newman MA, Thomson JM, Hammond SM: Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing. RNA14(8),1539–1549 (2008).
    • 112  Piskounova E, Viswanathan SR, Janas M et al.: Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem.283(31),21310–21314 (2008).
    • 113  Chang TC, Zeitels LR, Hwang HW et al.: Lin-28b transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl Acad. Sci. USA106(9),3384–3389 (2009).
    • 114  Johnson SM, Grosshans H, Shingara J et al.: Ras is regulated by the let-7 microRNA family. Cell120(5),635–647 (2005).
    • 115  Johnson CD, Esquela-Kerscher A, Stefani G et al.: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res.67(16),7713–7722 (2007).
    • 116  Morris JPT, McManus MT: Slowing down the Ras lane: miRNAs as tumor suppressors? Sci. STKE2005(297),pe41 (2005).
    • 117  Stahlhut Espinosa CE, Slack FJ: The role of microRNAs in cancer. Yale J. Biol. Med.79(3–4),131–140 (2006).
    • 118  Lee YS, Kim HK, Chung S, Kim KS, Dutta A: Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem.280(17),16635–16641 (2005).
    • 119  Li O, Vasudevan D, Davey CA, Droge P: High-level expression of DNA architectural factor HMGA2 and its association with nucleosomes in human embryonic stem cells. Genesis44(11),523–529 (2006).
    • 120  Balzer E, Heine C, Jiang Q, Lee VM, Moss EG: Lin28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro.Development137(6),891–900 (2000).
    • 121  Wilson KD, Venkatasubrahmanyam S, Jia F, Sun N, Butte AJ, Wu JC: MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev.18(5),749–758 (2009).
    • 122  Chin M, Mason M, Xie W et al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5(1),111–123 (2009).
    • 123  Wang Y, Baskerville S, Shenoy A, Babiarz J, Baehner L, Blelloch R: Embryonic stem cell-specific microRNAs regulate the G1–S transition and promote rapid proliferation. Nat. Genet.40(12),1478–1483 (2008).
    • 124  Hornstein E, Shomron N: Canalization of development by microRNAs. Nat. Genet.38(Suppl.),S20–S24 (2006).
    • 125  Waddington CH: Canalization of development and genetic assimilation of acquired characters. Nature183(4676),1654–1655 (1959).
    • 126  Lee NS, Kim JS, Cho WJ et al.: miR-302b maintains “stemness” of human embryonal carcinoma cells by post-transcriptional regulation of cyclin D2 expression. Biochem. Biophys. Res. Commun.377(2),434–440 (2008).
    • 127  Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS: MicroRNA-145 regulates Oct4, Sox2, and Klf4 and represses pluripotency in human embryonic stem cells. Cell137(4),647–658 (2009).
    • 128  Judson RL, Babiarz JE, Venere M, Blelloch R: Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol.27(5),459–461 (2009).
    • 129  Lin SL, Chang DC, Chang-Lin S et al.: miR-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA14(10),2115–2124 (2008).