We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Hydrogels in regenerative medicine: towards understanding structure–function relationships

    Melissa L Mather

    † Author for correspondence

    Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottingham, NG7 2RD, UK.

    &
    Paul E Tomlins

    Materials Division, National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK

    Published Online:https://doi.org/10.2217/rme.10.32

    Hydrogels are playing an increasing role in regenerative medicine owing to their growing functional sophistication. This is being underpinned by advances in hydrogel synthesis, particularly through molecular and genetic engineering, which provide greater control of hydrogel structure and hence the emergence of hydrogels with new functionalities. In order to exploit this capability it is necessary to fully understand the relationship between hydrogel structure and function. This article will investigate the nature of hydrogel-structure relationships by: highlighting the key attributes of hydrogels that modulate their function, discussing the link between these attributes and hydrogel behavior, and identifying possible measurement strategies to elucidate them.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Kopecek J: Hydrogel biomaterials: a smart future? Biomaterials28(34),5185–5192 (2007).▪ Provides good background information on hydrogel synthesis.
    • Hennink WE, Van Nostrum CF: Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev.54,13–36 (2002).▪ Provides good background information on hydrogel synthesis.
    • Hong Y, Gong Y, Gao C, Shen J: Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J. Biomed. Mater. Res.85A,628–637 (2007).
    • Hori Y, Winans AM, Huang CC, Horrigan EM, Irvine DJ: Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials29,3671–3682 (2008).
    • Temenoff JS, Mikos AG: Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials21,2405–2412 (2000).
    • Hou Q, Chau DYS, Pratoomsoot C et al.: In situ gelling hydrogels incorporating microparticles as drug delivery carriers for regenerative medicine. J. Pharm. Sci.97(9),3972–3980 (2008).
    • Chung IM, Enemchukwu NO, Khaja SD, Murthy N, Mantalaris A, Garcia AJ: Bioadhesive hydrogel microenvironments to modulate epithelial morphogenesis. Biomaterials29,2637–2645 (2008).
    • Cushing MC, Anseth KS: Hydrogel cell cultures. Science316,1133–1134 (2007).▪ Provides a perspective on future hydrogel applications.
    • Elisseeff J, Puleo C, Yang F, Sharma B: Advances in skeletal tissue engineering with hydrogels. Orthod. Craniofac. Res.8,150–161 (2005).
    • 10  Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R: Bioactive hydrogel scaffold for controllable vascular differentiation of human embryonic stem cells. Biomaterials28,2706–2717 (2007).
    • 11  Mano JF, Silva GA, Azevedo HS et al.: Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface4,999–1030 (2007).
    • 12  Rahaman MN, Mao JJ: Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol. Bioeng.91(3),261–284 (2005).
    • 13  Uriel S, Huang JJ, Moya ML et al.: The role of adipose protein derived hydrogels in adipogenesis. Biomaterials29,3712–3719 (2008).
    • 14  Hou Q, De Bank PA, Shakesheff KM: Injectable scaffold for tissue regeneration. J. Mater. Chem.14,1915–1923 (2004).
    • 15  Boyd LM, Carter AJ: Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Euro. Spine J.15(3),414–421 (2006).
    • 16  Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI: Repair of osteochondral defect with tissue engineered two phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng.8(5),827–837 (2002).
    • 17  Kopecek J: Smart and genetically engineered biomaterials and drug delivery systems. European J. Pharm. Sci.20,1–16 (2003).▪ Provides good background information on hydrogel synthesis.
    • 18  Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D: Enzyme-catalyzed assembly of DNA hydrogel. Nat. Mater.5,797–801 (2006).
    • 19  Yang H, Liu H, Kang H, Tan W: Engineering target-responsive hydrogels based on aptamer-target interactions. J. Am. Chem. Soc.130(20),6320–6321 (2008).
    • 20  Lutolf MP, Hubbell JA: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol.23(1),47–55 (2005).
    • 21  Bruck SD: Aspects of three types of hydrogels for biomedical applications. J. Biomed. Mater. Res.7,387–404 (1973).
    • 22  Furth ME, Atala A, Van Dyke ME: Smart biomaterials for tissue engineering and regenerative medicine. Biomaterials28,5068–5073 (2007).▪ Provides a perspective on future hydrogel applications.
    • 23  Almany L, Seliktar D: Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials26,2467–2477 (2005).
    • 24  Cushing MC, Liao J, Jaeggli P, Anseth KS: Material-based regulation of the myofibroblast phenotype. Biomaterials28,3378–3387 (2007).▪▪ Potential for hydrogel control of phenotype.
    • 25  Zhao X, Zhang S: Designer self-assembling peptide materials. Macromol. Biosci.7,13–22 (2007).▪▪ Examples of self-assembling hydrogels.
    • 26  Peyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ: The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3D biosynthetic hydrogel system. Biomaterials29,2597–2607 (2008).▪▪ Potential for hydrogel control of phenotype.
    • 27  Engler AJ, Sen S, Lee Sweeney H, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell126,677–689 (2006).▪▪ Potential for hydrogel control of phenotype.
    • 28  Johnson JA, Turro NJ, Koberstein JT, Mark JE: Some hydrogels having novel molecular structures. Prog. Polym. Sci.35(3),332–337 (2010).▪ Recent update on hydrogel designs.
    • 29  Zhang X, Guo X, Yang S et al.: Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. J. Appl. Polym. Sci.112(5),3063–3070 (2009).
    • 30  Ito K: Slide-ring materials using topological supramolecular architecture. Curr. Opin. Solid State Mater. Sci.14(2),28–34 (2010).
    • 31  Schexnailder P, Schmidt G: Nanocomposite polymer hydrogels. Colloid Polym. Sci.287(1),1–11 (2009).
    • 32  Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG: Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell. Sci.115,1423–1433 (2002).
    • 33  Griffith LG, Swartz MA: Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol.7,211–224 (2006).
    • 34  Roy I, Gupta MN: Smart polymeric materials: emerging biochemical applications. Chem. Biol.10,1161–1171 (2003).
    • 35  West JL, Hubbell JA: Photopolymerized hydrogel materials for drug delivery applications. React. Polym.25,139–147 (1995).
    • 36  Cruise GM, Scharp DS, Hubbell JA: Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials19(14),1287–1294 (1998).
    • 37  Pitt GG, Cha Y, Shah SS, Zhu KJ: Blends of PVA and PGLA: control of the permeability and degradability of hydrogels by blending. J. Control. Release19(1–3),189–199 (1992).
    • 38  Drury JL, Mooney DJ: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials24,4337–4351 (2003).
    • 39  Li RH, Altreuter DH, Gentile FT: Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol. Bioeng.50,365–373 (1999).
    • 40  Kasper FK, Seidlits SK, Tang A et al.: In vitro release of plasmid DNA from oligo(poly(etheylene glycol) fumarate) hydrogels. J. Control. Release104,521–539 (2005).
    • 41  Quick DJ, Anseth KS: DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality. J. Control. Release96,341–351 (2004).
    • 42  Bryant SJ, Durand KL, Anseth KS: Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J. Biomed. Mater. Res.67A,1430–1436 (2003).
    • 43  Brink KS, Yang PJ, Temenoff JS: Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Acta. Biomater.5(2),570–579 (2009).
    • 44  Hinkley JA, Morgret LD, Gehrke SH: Tensile properties of two responsive hydrogels. Polymer45(26),8837–8843 (2004).
    • 45  Lee KY, Mooney DJ: Hydrogels for tissue engineering. Chem. Rev.101,1869–1879 (2001).
    • 46  Baena JR, Lendl B: Raman spectroscopy in chemical bioanalysis. Curr. Opin. Chem. Biol.8(5),534–539 (2004).
    • 47  Hench LL, West JK: The sol-gel process. Chem. Rev.90,33–72 (1990).
    • 48  Mourant JR, Yamada YR, Carpenter S, Dominque LR, Freyer JP: FTIR spectroscopy discriminates biochemical differences in mammalian cell cultures at different growth stages. Biophys. J.85,1938–1947 (2003).
    • 49  Shankar BV, Patnaik A: A new pH and thermo-responsive chiral hydrogel for stimulated release. J. Phys. Chem. B111,9294–9300 (2007).
    • 50  Khatua D, Maiti R, Dey J: A supramolecular hydrogel that responds to biologically relevant stimuli. Chem. Commun.4903–4905 (2006).
    • 51  Gadian DG, Radda GK: NMR studies of tissue metabolism. Annu. Rev. Biochem.50,69–83 (1981).
    • 52  Goheen SC, Saunders RM, Harvey SD, Olsen PC: Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using γ-irradiation for crosslinking. J. Raman Spectrosc.37(11),1248–1256 (2006).
    • 53  Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J: A novel pH and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials26,4677–4683 (2005).
    • 54  Ju HK, Kim SY, Kim SJ, Lee YM: pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J. Appl. Polym. Sci.83,1128–1139 (2002).
    • 55  Wang D, Williams CG, Li Q, Sharma B, Elisseeff JH: Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials24,3969–3980 (2003).
    • 56  Brinker CJ, Scherer GW: Sol–gel–glass: I. Gelation and gel structure. J. Non-Crystalline Solids70,301–322 (1985).
    • 57  Zaroslov YD, Gordeliy VI, Kuklin AI et al.: Self-assembly of polyelectrolyte rods in polymer gel and in solution: small angle neutron scattering study. Macromolecules35,4466–4471 (2002).
    • 58  Johnson WC: Secondary structure of proteins through circular dichroism spectroscopy. Annu. Rev. Biophys. Biophys. Chem.17(1),145–166 (1988).
    • 59  Jeong B, Kim SW, Bae YH: Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev.54,37–51 (2002).
    • 60  Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G: Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) crosslinked with silicate nanoparticles. Phys. Chem. Chem. Phys.11,2760–2766 (2009).
    • 61  Jung JP, Jones JL, Cronier SA, Collier JH: Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation. Biomaterials29(13),2143–2151 (2008).
    • 62  Lee SJ, Kim SS, Lee YM: Interpenetrating polymer network hydrogels based on poly(ethylene glycol) macromer and chitosan. Carbohydr. Polym.41,197–205 (2000).
    • 63  Michels B, Watson G: Dynamics of micelles of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymers in aqueous solutions. Langmuir13,3111–3118 (1997).
    • 64  Yu GE, Deng Y, Dalton S et al.: Micellisation and gelation of triblock copoly(oxyethylene/oxypropylene/oxyethylene), F127. J. Chem. Soc. Faraday Trans.88(17),2537–2544 (1992).
    • 65  Liu W, Zhang B, Lu WW et al.: A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials25,3005–3012 (2004).
    • 66  Buckin V, O’Driscoll B, Smyth C: Ultrasonic spectroscopy for material analysis. Recent advances. Spectrosc. Eur.5,20–25 (2003).
    • 67  Mather ML, Collings AF, Bajenov N, Whittaker AK, Baldock C: Ultrasonic absorption in polymer gel dosimeters. Ultrasonics41(7),551–559 (2003).
    • 68  Norisuye T, Strybulevych A, Scanlon M, Page J: Ultrasonic investigation of the gelation process of poly(acrylamide) gels. Macromol. Symp.242,208–215 (2006).
    • 69  Havriliak S, Havriliak SJ: Dielectric And Mechanical Relaxation In Materials. Hanser, NY, USA (1997).
    • 70  Song MJ, Lee DS, Ahn JH, Kim DJ, Kimi SC: Dielectric behavior during sol-gel transition of PEO–PPO–PEO triblock copolymer aqueous solutions. Polym. Bull.43,497–504 (2000).
    • 71  Barretta P, Bordi F, Rinaldi C, Paradossi G: A dynamic light scattering study of hydrogels based on telechelic poly(vinyl alcohol). J. Phys. Chem. B104,11019–11026 (2000).
    • 72  Addadi L, Joester D, Nudelman F, Weiner S: Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry12(4),980–987 (2006).
    • 73  Liu J, He X, Pan X, Roberts CJ: Ultrasonic model and system for measurement of corneal biomechanical properties and validation on phantoms. J. Biomech.40,1177–1182 (2007).
    • 74  Masci G, Cametti C: Dielectric properties of thermoreversible hydrogels: the case of a dextran copolymer grafted with poly(n-isopropylacrylamide). J. Phys. Chem. B113(33),11421–11428 (2009).
    • 75  Kavanagh GM, Ross-Murphy SB: Rheological characterization of polymer gels. Prog. Polym. Sci.23,533–562 (1998).
    • 76  Park MJ, Char K: Phase behavior of a PEO–PPO–PEO triblock copolymer in aqueous solutions: two gelation mechanisms. Macromol. Res.10(6),325–331 (2002).
    • 77  Ramachandran S, Tseng Y, Yu YB: Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus. Biomacromolecules6(3),1316–1321 (2005).
    • 78  Whitesides GM, Mathias JP, Seto CT: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science254,1312–1319 (1991).
    • 79  Gil ES, Hudson SM: Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci.29,1173–1222 (2004).
    • 80  Yardimci H, Chung B, Harden JL, Leheny RL: Phase behavior and local dynamics of concentrated triblock copolymer micelles. J. Chem. Phys.123,244098 (2005).
    • 81  Peppas NA, Huang Y: Polymer and gels as molecular recognition agents. Pharm. Res.19(5),578–587 (2002).
    • 82  Pogodina NV, Lavrenko VP, Srinivas S, Winter HH: Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization. Polymer42(21),9031–9043 (2001).
    • 83  Budtova T, Navard P: Polyelectrolyte hydrogel swelling in a concentrated polymer solution. Macromolecules28(5),1714–1716 (1995).
    • 84  Warriner HE, Sidziak SHJ, Slack NL, Davidson P, Safinya CR: Lamellar biogels: fluid-membrane-based hydrogels containing polymer lipids. Science271,969–973 (1996).
    • 85  Mano JF: Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater.10(6),515–527 (2008).
    • 86  Madhumathi K, Shalumon KT, Rani VVD et al.: Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. Int. J. Biol. Macromol.45(1),12–15 (2009).
    • 87  Weiner AA, Moore MC, Walker AH, Shastri VP: Modulation of protein release from photocrosslinked networks by gelatin microparticles. Int. J. Pharm.360,107–114 (2008).
    • 88  Xu C, Kopecek J: Self-assembling hydrogels. Polym. Bull.58,53–63 (2007).
    • 89  Jeong B, Gutowska A: Lessons from nature: stimuli responsive polymers and their biomedical applications. Trends Biotechnol.7,305–311 (2002).
    • 90  Krsko P, Sukhishvili S, Mansfield M, Clancy R, Libera M: Electron-beam surface-patterned poly(ethylene glycol) microhydrogels. Langmuir19,5618–5625 (2003).
    • 91  Yin L, Fei L, Tang C, Yin C: Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network-super-porous hydrogel containing sodium alginate. Polym. Int.56,1563–1571 (2007).
    • 92  Addadi L, Joester D, Nudelman F, Weiner S: Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry12(4),980–987 (2006).
    • 93  Hoffman AS: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev.43,3–12 (2002).
    • 94  Geever LM, Devine DM, Nugent MJ et al.: Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on n-isopropylacrylamide. Eur. Polym. J.42,2540–2548 (2006).
    • 95  Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J: Physiochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng.2,9–29 (2000).
    • 96  Soboyejo WO, Mercer C, Allanmeh S, Nemetski B, Marcantonio N, Ricci J: Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces. Key Eng. Mater.198–199,203–230 (2001).
    • 97  Watson JD, Crick FHC: The structure of DNA. Cold Spring Harbor Symp. Quant. Biol.18,123–131 (1953).