We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Autobionics: a new paradigm in regenerative medicine and surgery

    Hutan Ashrafian

    † Author for correspondence

    Department of Surgery & Cancer, 10th Floor, Queen Elizabeth the Queen Mother (QEQM) Building, Imperial College London at St Mary’s Hospital, Praed Street, London, W2 1NY, UK.

    , &
    Published Online:https://doi.org/10.2217/rme.10.2

    The concept of bionics was developed 50 years ago and represented the development of engineering and technology based on natural biological systems. Traditional applications of bionics in healthcare include artificial bionic organs that apply engineering principles to replace or augment physiological functions by integrating electronic, mechanical or electromechanical components to inherent body tissues/organs (we term this as ‘exobionics’). Recently, there has been a new wave of bio-inspired treatments that act through the reorganization of the existing biological organs in an individual to enhance physiology. Here, the technology does not replace biological tissue, but rather applies engineering principles to replace or augment physiological functions by the rearrangement and manipulation of inherent tissue/organs; we term this autobionics. Examples include: dynamic cardiomyoplasty (artificial heart pump using skeletal muscle), the Ross procedure (pulmonary autograft), dynamic graciloplasty (artificial sphincter) and metabolic gastric bypass (rearranging the gastrointestinal tract to modify gut- and pancreatic-hormone release). Autobionic therapies can be classified into dynamic, static and metabolic procedures. This results in tissue redesignation (one tissue used in place of another), tissue replacement and systems reorganization (rearranging inherent organ/tissue anatomy). In some cases autobionic procedures can enhance physiological function beyond normality and represents a new era in bio-inspired versatility.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Monties JR: Leonardo da Vinci: precursor member of the international society for rotary blood pumps? Artif. Organs23(6),477–479 (1999).
    • Robicsek F: Leonardo da Vinci and the sinuses of valsalva. Ann. Thorac. Surg.52(2),328–335 (1991).
    • Vincent JF, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl AK: Biomimetics: its practice and theory. J. R. Soc. Interface3(9),471–482 (2006).
    • Historical highlights in bionics and related medicine. Science295(5557),995 (2002).
    • Craelius W: The bionic man: restoring mobility. Science295(5557),1018–1021 (2002).
    • Camporesi S: Oscar pistorius, enhancement and post-humans. J. Med. Ethics34(9),639 (2008).
    • Miodownik M: The bionic future of sport. Mater. Today10(9),6 (2007).
    • Taylor DO, Edwards LB, Aurora P et al.: Registry of the international society for heart and lung transplantation: twenty-fifth official adult heart transplant report – 2008. J. Heart Lung Transplant.27(9),943–956 (2008).
    • Perl J, Bargman JM, Davies SJ, Jassal SV: Clinical outcomes after failed renal transplantation – does dialysis modality matter? Semin. Dial.21(3),239–244 (2008).
    • 10  Whitaker IS, Karoo RO, Spyrou G, Fenton OM: The birth of plastic surgery: the story of nasal reconstruction from the edwin smith papyrus to the twenty-first century. Plast. Reconstr. Surg.120(1),327–336 (2007).
    • 11  Sorta-Bilajac I, Muzur A: The nose between ethics and aesthetics: Sushruta’s legacy. Otolaryngol. Head Neck Surg.137(5),707–710 (2007).
    • 12  Pickrell KL, Broadbent TR, Masters FW, Metzger JT: Construction of a rectal sphincter and restoration of anal continence by transplanting the gracilis muscle; a report of four cases in children. Ann. Surg.135(6),853–862 (1952).▪▪ Identifies the first use of the gracilis muscle in fashioning a functional rectal neo-sphincter in humans.
    • 13  Lower RR, Stofer RC, Shumway NE: A study of pulmonary valve autotransplantation. Surgery48,1090–1100 (1960).
    • 14  Lower RR, Stofer RC, Shumway NE: Autotransplantation of the pulmonic valve into the aorta. J. Thorac. Cardiovasc. Surg.39,680–687 (1960).
    • 15  Pillsbury RC, Shumway NE: Replacement of the aortic valve with the autologous pulmonic valve. Surg. Forum17,176–177 (1966).
    • 16  Hochrein M: Der mechanismus der semilunarklappen des herzens. Dtsch Arch. Klin. Med.54,131–164 (1927).
    • 17  Ross DN: Replacement of aortic and mitral valves with a pulmonary autograft. Lancet2(7523),956–958 (1967).▪▪ Identifies the first pulmonary autograft or ‘Ross procedure’ in humans.
    • 18  Ashrafian H, Griselli M, Rubens MB, Mullen MJ, Sethia B: Pulmonary homograft endocarditis 19 years after a Ross procedure. Thorac. Cardiovasc. Surg.55(1),55–56 (2007).
    • 19  Hon JK, Melina G, Wray J, Yacoub MH: Insights from 36 years’ follow up of a patient with the Ross operation. J. Heart Valve Dis.12(5),561–565 (2003).
    • 20  Gonzalez-Lavin L, Metras D, Ross DN: Anatomic and physiologic bases for the Ross procedure. J. Heart Valve Dis.5(4),383–390; discussion 401–383 (1996).
    • 21  Legarra JJ, Concha M, Casares J, Merino C, Munoz I, Alados P: Left ventricular remodeling after pulmonary autograft replacement of the aortic valve (Ross operation). J. Heart Valve Dis.10(1),43–48 (2001).
    • 22  Yacoub MH, Klieverik LM, Melina G et al.: An evaluation of the Ross operation in adults. J. Heart Valve Dis.15(4),531–539 (2006).
    • 23  Bonow RO, Carabello BA, Chatterjee K et al.: 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation118(15),e523–e661 (2008).
    • 24  Yacoub MH: The Ross operation – an evolutionary tale. Asian Cardiovasc. Thorac. Ann.14(1),1–2 (2006).
    • 25  Williams DB, Danielson GK, Mcgoon DC, Puga FJ, Mair DD, Edwards WD: Porcine heterograft valve replacement in children. J. Thorac. Cardiovasc. Surg.84(3),446–450 (1982).
    • 26  Gorczynski A, Trenkner M, Anisimowicz L et al.: Biomechanics of the pulmonary autograft valve in the aortic position. Thorax37(7),535–539 (1982).▪ Identifies the biomechanics of pulmonary autografts.
    • 27  Athanasiou T, Cherian A, Ross D: The Ross II procedure: pulmonary autograft in the mitral position. Ann. Thorac. Surg.78(4),1489–1495 (2004).
    • 28  Dejesus FR: Breve consideraciones sobre un case de herida penetrante del corazon. Bol. Asoc. Med. P. R.23,380–382 (1931).▪ Applies skeletal muscle to treat injured cardiac muscle.
    • 29  Leriche R, Fontaine R: Essai expérimental de traitement de certains infarctus du myocarde et de l’anéurysme du coeur par une graffe muscle strié. Bull. Soc. Nat. Chir.9,229–232 (1933).▪ Applies skeletal muscle to treat injured cardiac muscle.
    • 30  Beck CS: The development of a new blood supply to the heart by operation. Ann. Surg.102,801–813 (1935).▪ Identifies the circulatory physiology when applying skeletal muscle onto cardiac muscle.
    • 31  Beck CS: A new blood supply to the heart by operation. Surg. Gynecol. Obstet.61,407–410 (1935).▪ Identifies the circulatory physiology when applying skeletal muscle onto cardiac muscle.
    • 32  Kantrowitz A, McKinnon KW: The experimental use of the diaphragm as an auxiliary myocardium. Surg. Forum9,266–268 (1958).
    • 33  Kusaba E, Schraut W, Sawatani S, Jaron D, Freed P, Kantrowitz A: A diaphragmatic graft for augmenting left ventricular function: a feasibility study. Trans. Am. Soc. Artif. Intern. Organs19,251–257 (1973).
    • 34  Dewar ML, Drinkwater DC, Wittnich C, Chiu RC: Synchronously stimulated skeletal muscle graft for myocardial repair. An experimental study. J. Thorac. Cardiovasc. Surg.87(3),325–331 (1984).
    • 35  Salmons S, Sreter FA: Significance of impulse activity in the transformation of skeletal muscle type. Nature263(5572),30–34 (1976).▪▪ Identifies the role of impulse activity on transforming skeletal muscle.
    • 36  Salmons S, Vrbova G: The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol.201(3),535–549 (1969).▪ Identifies the role of impulse activity on muscular contraction by fast- and slow-twitch fibers.
    • 37  Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW: Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science236(4799),324–327 (1987).▪▪ Identifies the potential of transforming skeletal muscle to provide ‘cardiac-like’ function.
    • 38  Carpentier A, Chachques JC: Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet1(8440),1267 (1985).▪▪ Identifies the first dynamic cardiomyoplasty in humans.
    • 39  Chachques JC, Grandjean P, Schwartz K et al.: Effect of latissimus dorsi dynamic cardiomyoplasty on ventricular function. Circulation78(Suppl. III),203–216 (1988).
    • 40  Lee KF, Dignan RJ, Parmar JM et al.: Effects of dynamic cardiomyoplasty on left ventricular performance and myocardial mechanics in dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg.102(1),124–131 (1991).
    • 41  Bellotti G, Moraes A, Bocchi E et al.: Late effects of cardiomyoplasty on left ventricular mechanics and diastolic filling. Circulation88(5 Pt 2),II304–II308 (1993).
    • 42  Nakajima H, Niinami H, Hooper TL et al.: Cardiomyoplasty: probable mechanism of effectiveness using the pressure–volume relationship. Ann. Thorac. Surg.57(2),407–415 (1994).
    • 43  Bolotin G, Lorusso R, Schreuder JJ, Kaulbach HG, Uretzky G, van der Veen FH: Effects of acute dynamic cardiomyoplasty in a goat model of chronic ventricular dilatation: part 1. Ann. Thorac. Surg.74(2),507–513 (2002).
    • 44  Kaulbach HG, Lorusso R, Bolotin G, Schreuder JJ, van der Veen FH: Effects of chronic cardiomyoplasty on ventricular remodeling in a goat model of chronic cardiac dilatation: part 2. Ann. Thorac. Surg.74(2),514–521 (2002).
    • 45  Mott BD, Oh JH, Misawa Y et al.: Mechanisms of cardiomyoplasty: comparative effects of adynamic versus dynamic cardiomyoplasty. Ann. Thorac. Surg.65(4),1039–1044; discussion 1044–1035 (1998).
    • 46  Shirota K, Kawaguchi O, Huang Y et al.: Ventricular remodeling after cardiomyoplasty in heart failure sheep: passive and dynamic effects. Ann. Thorac. Surg.70(6),2102–2106 (2000).
    • 47  Silverman NA: Invited letter concerning: clinical and left ventricular function outcomes up to five years after dynamic cardiomyoplasty. J. Thorac. Cardiovasc. Surg.109(2),397–398 (1995).
    • 48  Furnary AP, Jessup FM, Moreira LP: Multicenter trial of dynamic cardiomyoplasty for chronic heart failure. The American Cardiomyoplasty Group. J. Am. Coll. Cardiol.28(5),1175–1180 (1996).
    • 49  Astra LI, Stephenson LW: Skeletal muscle as a myocardial substitute. Proc. Soc. Exp. Biol. Med.224(3),133–140 (2000).
    • 50  Starling RC, Jessup M, Oh JK et al.: Sustained benefits of the CorCap cardiac support device on left ventricular remodeling: three year follow-up results from the acorn clinical trial. Ann. Thorac. Surg.84(4),1236–1242 (2007).
    • 51  Schenk S, Reichenspurner H, Groezner JG et al.: Myosplint implantation and ventricular shape change in patients with dilative cardiomyopathy – first clinical experience. J. Heart Lung Transplant.20(2),217 (2001).
    • 52  Chachques JC: Cardiomyoplasty: is it still a viable option in patients with end-stage heart failure? Eur. J. Cardiothorac. Surg.35(2),201–203 (2009).
    • 53  Sherwood JT, Schomisch SJ, Thompson DR, George DT, Cmolik BL: Aortomyoplasty: hemodynamics and comparison to the intraaortic balloon pump. J. Surg. Res.110(2),315–321 (2003).
    • 54  Trainini J, Cabrera Fischer EI, Barisani J et al.: Dynamic aortomyoplasty in treating end-stage heart failure. J. Heart Lung Transplant.21(10),1068–1073 (2002).
    • 55  Choy DS, Ellis R: Multiple hearts in animals other than barosaurus. Lancet352(9129),744 (1998).
    • 56  Gray NA Jr, Selzman CH: Current status of the total artificial heart. Am. Heart J.152(1),4–10 (2006).
    • 57  Acker MA, Anderson WA, Hammond RL et al.: Skeletal muscle ventricles in circulation. One to eleven weeks’ experience. J. Thorac. Cardiovasc. Surg.94(2),163–174 (1987).▪ Describes the early use of skeletal-muscle ventricles.
    • 58  Thomas GA, Isoda S, Hammond RL et al.: Pericardium-lined skeletal muscle ventricles: up to two years’ in-circulation experience. Ann. Thorac. Surg.62(6),1698–1706; discussion 1698–1706 (1996).
    • 59  Thomas GA, Lu H, Isoda S et al.: Skeletal muscle ventricles in circulation: decreased incidence of rupture. Ann. Thorac. Surg.61(1),430–436 (1996).
    • 60  Thomas GA, Hammond RL, Greer K et al.: Functional assessment of skeletal muscle ventricles after pumping for up to four years in circulation. Ann. Thorac. Surg.70(4),1281–1289; discussion 1290 (2000).
    • 61  Thomas GA, Lelkes PI, Chick DM et al.: Endothelial lined skeletal muscle ventricles: open and percutaneous seeding techniques. J. Card. Surg.10(3),245–256 (1995).
    • 62  Mannion JD, Hammond R, Stephenson LW: Hydraulic pouches of canine latissimus dorsi. Potential for left ventricular assistance. J. Thorac. Cardiovasc. Surg.91(4),534–544 (1986).
    • 63  Pochettino A, Spanta AD, Hammond RL et al.: Skeletal muscle ventricles for total heart replacement. Ann. Surg.212(3),345–352 (1990).
    • 64  Mannion JD, Acker MA, Hammond RL, Stephenson LW: Four hour circulatory assistance with canine skeletal muscle ventricles. Surg. Forum37,211–213 (1986).
    • 65  Ramnarine IR, Capoccia M, Ashley Z et al.: Counterpulsation from the skeletal muscle ventricle and the intraaortic balloon pump in the normal and failing circulations. Circulation114(Suppl. 1),I10–I15 (2006).
    • 66  Mocek FW, Anderson DR, Pochettino A et al.: Skeletal muscle ventricles in circulation long-term: one hundred ninety-one to eight hundred thirty-six days. J. Heart Lung Transplant.11(5),S334–S340 (1992).
    • 67  Hooper TL, Niinami H, Hammond RL et al.: Skeletal muscle ventricles as left atrial-aortic pumps: short-term studies. Ann. Thorac. Surg.54(2),316–322 (1992).
    • 68  Lu H, Fietsam R Jr, Hammond RL et al.: Skeletal muscle ventricles: left ventricular apex to aorta configuration. Ann. Thorac. Surg.55(1),78–85 (1993).
    • 69  Dabareiner RM, Schmitz DG, Honnas CM, Carter GK: Gracilis muscle injury as a cause of lameness in two horses. J. Am. Vet. Med. Assoc.224(10),1630–1633, 1605–1636 (2004).
    • 70  Last RJ: Anatomy: Regional and Applied (7th Edition). Churchill Livingstone, Edinburgh, UK (1984).
    • 71  Coquerel-Beghin D, Milliez PY, Auquit-Auckbur I, Lemierre G, Duparc F: The gracilis musculocutaneous flap: vascular supply of the muscle and skin components. Surg. Radiol. Anat.28(6),588–595 (2006).
    • 72  Macchi V, Vigato E, Porzionato A et al.: The gracilis muscle and its use in clinical reconstruction: an anatomical, embryological, and radiological study. Clin. Anat.21(7),696–704 (2008).
    • 73  Konsten J, Baeten CG, Havenith MG, Soeters PB: Morphology of dynamic graciloplasty compared with the anal sphincter. Dis. Colon Rectum36(6),559–563 (1993).
    • 74  Buller AJ, Eccles JC, Eccles RM: Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol.150,417–439 (1960).
    • 75  Adang EM, Engel GL, Rutten FF, Geerdes BP, Baeten CG: Cost-effectiveness of dynamic graciloplasty in patients with fecal incontinence. Dis. Colon Rectum41(6),725–733; discussion 733–724 (1998).
    • 76  Belyaev O, Muller C, Uhl W: Neosphincter surgery for fecal incontinence: a critical and unbiased review of the relevant literature. Surg. Today36(4),295–303 (2006).
    • 77  Madoff RD: Surgical treatment options for fecal incontinence. Gastroenterology126(Suppl. 1),S48–S54 (2004).
    • 78  Flickinger EG, Pories WJ, Meelheim HD, Sinar DR, Blose IL, Thomas FT: The greenville gastric bypass. Progress report at 3 years. Ann. Surg.199(5),555–562 (1984).
    • 79  Pories WJ, Swanson MS, Macdonald KG et al.: Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg.222(3),339–350; discussion 350–332 (1995).▪▪ Identifies the weight-independent effects of metabolic surgery on diabetes resolution.
    • 80  Ashrafian H, Bueter M, Ahmed K et al.: Metabolic surgery: an evolution through bariatric animal models. Obes. Rev. (2010) (Epub ahead of print).
    • 81  Ashrafian H, Le Roux CW: Metabolic surgery and gut hormones – a review of bariatric entero-humoral modulation. Physiol. Behav.97(5),620–631 (2009).
    • 82  Buchwald H, Avidor Y, Braunwald E et al.: Bariatric surgery: a systematic review and meta-analysis. JAMA292(14),1724–1737 (2004).▪▪ Identifies the benefits of metabolic surgery.
    • 83  Buchwald H, Estok R, Fahrbach K et al.: Weight and Type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med.122(3),248–256 e245 (2009).▪ Identifyies the antidiabetic effects of metabolic surgery.
    • 84  Celi FS: Brown adipose tissue – when it pays to be inefficient. N. Engl. J. Med.360(15),1553–1556 (2009).
    • 85  Carey DG, Pliego GJ, Raymond RL, Skau KB: Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate. Obes. Surg.16(4),469–477 (2006).
    • 86  Cornu M, Yang JY, Jaccard E, Poussin C, Widmann C, Thorens B: Glp-1 protects β-cells against apoptosis by increasing the activtiy of an IGF-2/IGF1-receptor autocrine loop. Diabetes58(8),1816–1825 (2009).
    • 87  Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF: Camp-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic β-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J. Biol. Chem.274(20),14147–14156 (1999).
    • 88  Holz GG: Epac: a new camp-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell. Diabetes53(1),5–13 (2004).
    • 89  Ashrafian H, Le Roux CW, Darzi A, Athanasiou T: Effects of bariatric surgery on cardiovascular function. Circulation118(20),2091–2102 (2008).
    • 90  Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV: Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N. Engl. J. Med.353(3),249–254 (2005).▪▪ Identifies that metabolic surgery not only resolves diabetes but, in some cases, can lead to an excess insulin release.
    • 91  Cummings DE: Gastric bypass and nesidioblastosis – too much of a good thing for islets? N. Engl. J. Med.353(3),300–302 (2005).
    • 92  Grammaticos PC, Diamantis A: Useful known and unknown views of the father of modern medicine, hippocrates and his teacher democritus. Hell. J. Nucl. Med.11(1),2–4 (2008).