We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

In vitro differentiation potential of human embryonic versus adult stem cells

    GE Rooney

    Regenerative Medicine Institute, National Centre for Biomedical & Engineering Science, National University of Ireland, Galway, Ireland

    Department of Anatomy & Neurobiology, Sue & Bill Gross Stem Cell Research Center, Reeve-Irvine Research Center, 2111 Gillespie Neuroscience Research Facility, School of Medicine, University of California at Irvine, Irvine, CA, 92697-4292, USA

    ,
    GI Nistor

    Department of Anatomy & Neurobiology, Sue & Bill Gross Stem Cell Research Center, Reeve-Irvine Research Center, 2111 Gillespie Neuroscience Research Facility, School of Medicine, University of California at Irvine, Irvine, CA, 92697-4292, USA

    ,
    FB Barry

    Regenerative Medicine Institute, National Centre for Biomedical & Engineering Science, National University of Ireland, Galway, Ireland

    &
    Published Online:https://doi.org/10.2217/rme.10.20

    Background: There is widespread controversy regarding the potential of human neural stem cells and human mesenchymal stem cells (hMSCs) to form cell types outside of their normal developmental lineage. A greater understanding of the differentiation potential and bias of these stem cell types would allow researchers to select the cell type that best suits the research or clinical need at hand. Materials & methods: We used identical in vitro protocols to quantitatively compare the potential of human embryonic stem cells, human neural stem cells and hMSCs to differentiate into specific ectodermal or mesodermal lineages. Results: Our findings demonstrate that human embryonic stem cells and human neural stem cells have the ability to differentiate into high purity neuronal progenitor or oligodendrocyte progenitor cultures. By contrast, hMSCs generated exceedingly limited numbers of neural lineages. Both human embryonic stem cells and hMSCs generated adipocytes and osteocytes when exposed to mesodermal differentiation conditions. Conclusion: These studies underscore the importance of distinguishing differentiation potential from differentiation bias, an important consideration in the development of cell replacement strategies.

    Bibliography

    • Cibelli JB, Grant KA, Chapman KB et al.: Parthenogenetic stem cells in nonhuman primates. Science295,819 (2002).
    • Vrana KE, Hipp JD, Goss AM et al.: Nonhuman primate parthenogenetic stem cells. Proc. Natl Acad. Sci. USA100(Suppl. 1),11911–11916 (2003).
    • Zeng X, Rao MS: Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience145,1348–1358 (2007).
    • Finley MF, Kulkarni N, Huettner JE: Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells and embryonic stem cells. J. Neurosci.16,1056–1065 (1996).
    • Lang KJ, Rathjen J, Vassilieva S, Rathjen PD: Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system? J. Neurosci. Res.76,184–192 (2004).
    • Liu S, Qu Y, Stewart TJ et al.: Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl Acad. Sci. USA97,6126–6131 (2000).
    • Billon N, Jolicoeur C, Raff M: Generation and characterization of oligodendrocytes from lineage-selectable embryonic stem cells in vitro. Methods Mol. Biol.330,15–32 (2006).
    • Perrier AL, Tabar V, Barberi T et al.: Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101,12543–12548 (2004).
    • Schulz TC, Noggle SA, Palmarini GM et al.: Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells22,1218–1238 (2004).
    • 10  Park CH, Minn YK, Lee JY et al.: In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem.92,1265–1276 (2005).
    • 11  Hwang NS, Varghese S, Zhang Z, Elisseeff J: Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine–glycine–aspartate-modified hydrogels. Tissue Eng.12,2695–2706 (2006).
    • 12  Huang H, Zhao X, Chen L et al.: Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem. Biophys. Res. Commun.351,321–327 (2006).
    • 13  St John JC, Ramalho-Santos J, Gray HL et al.: The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells7,141–153 (2005).
    • 14  Burridge PW, Anderson D, Priddle H et al.: Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights inter-line variability. Stem Cells25(4),929–938 (2007).
    • 15  Deshpande DM, Kim YS, Martinez T et al.: Recovery from paralysis in adult rats using embryonic stem cells. Ann. Neurol.60,32–44 (2006).
    • 16  Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS: Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol.172,383–397 (2001).
    • 17  Reubinoff BE, Itsykson P, Turetsky T et al.: Neural progenitors from human embryonic stem cells. Nat. Biotechnol.19,1134–1140 (2001).
    • 18  Li XJ, Du ZW, Zarnowska ED et al.: Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol.23,215–221 (2005).
    • 19  Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS: Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia49,385–396 (2005).
    • 20  Keirstead HS, Nistor G, Bernal G et al.: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci.25,4694–4705 (2005).
    • 21  Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL: Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell68,33–51 (1992).
    • 22  Lois C, Alvarez-Buylla A: Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci. USA90,2074–2077 (1993).
    • 23  Uchida N, Buck DW, He D et al.: Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA97,14720–14725 (2000).
    • 24  Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255,1707–1710 (1992).
    • 25  Mayer-Proschel M, Kalyani AJ, Mujtaba T, Rao MS: Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron19,773–785 (1997).
    • 26  Shi J, Marinovich A, Barres BA: Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci.18,4627–4636 (1998).
    • 27  Caldwell MA, He X, Wilkie N et al.: Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotechnol.19,475–479 (2001).
    • 28  Einstein O, Karussis D, Grigoriadis N et al.: Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol. Cell. Neurosci.24,1074–1082 (2003).
    • 29  Pluchino S, Quattrini A, Brambilla E et al.: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature422,688–694 (2003).
    • 30  Ben-Hur T, Einstein O, Mizrachi-Kol R et al.: Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia41,73–80 (2003).
    • 31  Bulte JW, Ben-Hur T, Miller BR et al.: MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn. Reson. Med.50,201–205 (2003).
    • 32  Nunes MC, Roy NS, Keyoung HM et al.: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med.9,439–447 (2003).
    • 33  Cummings BJ, Uchida N, Tamaki SJ, Anderson AJ: Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurol. Res.28,474–481 (2006).
    • 34  Ogawa Y, Sawamoto K, Miyata T et al.: Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res.69,925–933 (2002).
    • 35  Iwanami A, Kaneko S, Nakamura M et al.: Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res.80,182–190 (2005).
    • 36  Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97,703–716 (1999).
    • 37  Morshead CM, Craig CG, van der Kooy D: In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development125,2251–2261 (1998).
    • 38  Wright LS, Prowse KR, Wallace K, Linskens MH, Svendsen CN: Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp. Cell Res.312,2107–2120 (2006).
    • 39  Han SS, Kang DY, Mujtaba T, Rao MS, Fischer I: Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp. Neurol.177,360–375 (2002).
    • 40  Yan J, Xu L, Welsh AM et al.: Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med.4,e39 (2007).
    • 41  Pittenger MF, Mackay AM, Beck SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science284,143–147 (1999).
    • 42  Chan J, O’Donoghue K, Gavina M et al.: Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells24,1879–1891 (2006).
    • 43  Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B: Transplanted bone marrow generates new neurons in human brains. Proc. Natl Acad. Sci. USA100,1364–1369 (2003).
    • 44  Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM: Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl Acad. Sci. USA100,2088–2093 (2003).
    • 45  Cogle CR, Yachnis AT, Laywell ED et al.: Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet363,1432–1437 (2004).
    • 46  Chu MS, Chang CF, Yang CC, Bau YC, Ho LL, Hung SC: Signalling pathway in the induction of neurite outgrowth in human mesenchymal stem cells. Cell. Signal.18,519–530 (2006).
    • 47  Krampera M, Marconi S, Pasini A et al.: Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone40(2),382–390 (2006).
    • 48  Shih DT, Lee DC, Chen SC et al.: Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells23,1012–1020 (2005).
    • 49  Woodbury D, Schwarz EJ, Prockop DJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res.61,364–370 (2000).
    • 50  Cho KJ, Trzaska KA, Greco SJ et al.: Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1α. Stem Cells23,383–391 (2005).
    • 51  Hermann A, Liebau S, Gastl R et al.: Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J. Neurosci. Res.83,1502–1514 (2006).
    • 52  Mareschi K, Novara M, Rustichelli D et al.: Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types. Exp. Hematol.34,1563–1572 (2006).
    • 53  Akiyama Y, Radtke C, Honmou O, Kocsis JD: Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia39,229–236 (2002).
    • 54  Akiyama Y, Radtke C, Kocsis JD: Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J. Neurosci.22,6623–6630 (2002).
    • 55  Sasaki M, Honmou O, Akiyama Y, Uede T, Hashi K, Kocsis JD: Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia35,26–34 (2001).
    • 56  Koda M, Okada S, Nakayama T et al.: Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport16,1763–1767 (2005).
    • 57  Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res.77,192–204 (2004).
    • 58  Yoon SH, Shim YS, Park YH et al.: Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells25,2066–2073 (2007).
    • 59  Callera F, do Nascimento RX: Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp. Hematol.34,130–131 (2006).
    • 60  Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282,1145–1147 (1998).
    • 61  Svendsen CN, ter Borg MG, Armstrong RJ et al.: A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods85,141–152 (1998).
    • 62  Torgan CE, Reedy MC, Kraus WE: Isolation, growth and differentiation of adult rabbit skeletal myoblasts in vitro. Methods Cell Sci.18(4),299–307 (1996).
    • 63  Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem.64,295–312 (1997).
    • 64  Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al.: Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol.164,247–256 (2000).
    • 65  Sanchez-Ramos JR: Neural cells derived from adult bone marrow and umbilical cord blood. J. Neurosci. Res.69,880–893 (2002).
    • 66  Woodbury D, Reynolds K, Black IB: Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res.69,908–917 (2002).
    • 67  Rooney GE, Howard L, O’Brien T, Windebank AJ, Barry FP: Elevation of cAMP in mesenchymal stem cells transiently upregulates neural markers rather than inducing neural differentiation. Stem Cells Dev.18(3),387–398 (2009).
    • 68  Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J: The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun.265,134–139 (1999).
    • 69  Tondreau T, Lagneaux L, Dejeneffe M et al.: Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation72,319–326 (2004).
    • 70  Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS: Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells24,835–843 (2006).
    • 71  Goolsby J, Marty MC, Heletz D et al.: Hematopoietic progenitors express neural genes. Proc. Natl Acad. Sci. USA100,14926–14931 (2003).
    • 72  Steidl U, Kronenwett R, Rohr UP et al.: Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood99,2037–2044 (2002).
    • 73  Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood105,1815–1822 (2005).
    • 74  Noel D, Djouad F, Bouffi C, Mrugala D, Jorgensen C: Multipotent mesenchymal stromal cells and immune tolerance. Leuk. Lymphoma48,1283–1289 (2007).
    • 75  Song S, Kamath S, Mosquera D et al.: Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp. Neurol.185,191–197 (2004).
    • 76  Hofstetter CP, Schwarz EJ, Hess D et al.: Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl Acad. Sci. USA99,2199–2204 (2002).
    • 77  Lu P, Jones LL, Tuszynski MH: BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp. Neurol.191,344–360 (2005).
    • 78  Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH: Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci.24,6402–6409 (2004).