We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Role of transcription factors in cell replacement therapies for neurodegenerative conditions

    Meghan Thomas

    Parkinson’s Center (ParkC), Vario Health Institute, Edith Cowan University, Perth, Australia and Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia, Perth, Australia.

    Published Online:https://doi.org/10.2217/rme.10.17

    Parkinson’s disease is the second most common neurological condition, behind dementia, for which there is currently no cure. A promising curative treatment approach is cell replacement therapy, which involves the introduction of new dopaminergic cells into a degenerative Parkinson’s disease brain. The future progression of this field into a clinically viable treatment option is reliant on generating replacement dopaminergic cells. Furthermore, as the ability of transplanted dopaminergic neurons to form connections with host tissue is dependent on where the cells are derived from, the replacement dopaminergic cells will need to be phenotypically similar to substantia nigra dopaminergic neurons. This article focuses on how developmental transcription factors have been utilized to assist the progression of stem cell therapies for Parkinson’s disease. Key transcription factor-mediated stages of substantia nigra dopaminergic neuronal development is described in the belief that a comprehensive understanding of this specific dopaminergic differentiation pathway is necessary for the progression of successful cell therapies for Parkinson’s disease.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Hosing C, Saliba RM, Mclaughlin P et al.: Long-term results favor allogeneic over autologous hematopoietic stem cell transplantation in patients with refractory or recurrent indolent non-hodgkin’s lymphoma. Ann. Oncol.14(5),737–744 (2003).
    • Couri CE, Oliveira MC, Stracieri AB et al.: C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed Type 1 diabetes mellitus. JAMA301(15),1573–1579 (2009).
    • Voltarelli JC, Couri CE, Stracieri AB et al.: Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed Type 1 diabetes mellitus. JAMA297(14),1568–1576 (2007).
    • Buchholz DE, Hikita ST, Rowland TJ et al.: Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells27(10),2427–2434 (2009).
    • Tezel TH, Del Priore LV, Berger AS, Kaplan HJ: Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am. J. Ophthalmol.143(4),584–595 (2007).
    • Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM: Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell87(4),661–673 (1996).
    • Wurst W, Bally-Cuif L: Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci.2(2),99–108 (2001).
    • Staudt N, Houart C: The prethalamus is established during gastrulation and influences diencephalic regionalization. PLoS Biol.5(4),e69 (2007).
    • Puelles L, Martinez-De-La-Torre M, Paxinos G, Watson C, Martinez S: The Chick Brain in Stereotaxic Coordinates (1st Edition). Academic Press, CA, USA (2007).
    • 10  Muller CW: Transcription factors: global and detailed views. Curr. Opin. Struct. Biol.11(1),26–32 (2001).
    • 11  Ouzounis CA, Papavassiliou AG: DNA-Binding Motifs of Eukaryotic Transcription Factors. Landes Bioscience, Austin, TX, USA 1–13 (1997).
    • 12  Barker RA, Dunnett SB: Functional integration of neural grafts in Parkinson’s disease. Nat. Neurosci.2(12),1047–1048 (1999).
    • 13  Freed CR, Breeze RE, Rosenberg NL et al.: Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med.327(22),1549–1555 (1992).
    • 14  Piccini P, Brooks DJ, Bjorklund A et al.: Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat. Neurosci.2(12),1137–1140 (1999).▪▪ Demonstrates that nigral grafts into a patient with Parkinson’s disease release dopamine and exert functional improvements, thus providing proof-of-princple that cell replacement therapies are a feasible treatment option.
    • 15  Kuan WL, Lin R, Tyers P, Barker RA: The importance of A9 dopaminergic neurons in mediating the functional benefits of fetal ventral mesencephalon transplants and levodopa-induced dyskinesias. Neurobiol. Dis.25(3),594–608 (2007).
    • 16  Thompson L, Barraud P, Andersson E, Kirik D, Bjorklund A: Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J. Neurosci.25(27),6467–6477 (2005).▪ Following less than favorable US Phase I clinical trials of nigral transplants for Parkinson’s disease patients, identifying different subtypes of cells within grafts and their accountability for variations in functional outcomes is an important progression for this field.
    • 17  Wijeyekoon R, Barker RA: Cell replacement therapy for Parkinson’s disease. Biochim. Biophys. Acta1792(7),688–702 (2009).
    • 18  Park CH, Minn YK, Lee JY et al.: In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem.92(5),1265–1276 (2005).
    • 19  Perrier AL, Tabar V, Barberi T et al.: Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101(34),12543–12548 (2004).
    • 20  Zeng X, Cai J, Chen J et al.: Dopaminergic differentiation of human embryonic stem cells. Stem Cells22(6),925–940 (2004).
    • 21  Chen Q, Long Y, Yuan X et al.: Protective effects of bone marrow stromal cell transplantation in injured rodent brain: Synthesis of neurotrophic factors. J. Neurosci. Res.80(5),611–619 (2005).
    • 22  Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG: Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol.198(1),54–64 (2006).
    • 23  Vazin T, Chen J, Lee CT, Amable R, Freed WJ: Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells26(6),1517–1525 (2008).
    • 24  Vazin T, Becker KG, Chen J et al.: A novel combination of factors, termed spie, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One4(8),e6606 (2009).
    • 25  Davis RL, Weintraub H, Lassar AB: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell51(6),987–1000 (1987).
    • 26  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).▪▪ The generation of induced pluripotent stem cells (iPSCs) from fibroblasts has completely revolutionized the field of cell replacement therapies.
    • 27  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).▪▪ The generation of iPSCs from fibroblasts has completely revolutionized the field of cell replacement therapies.
    • 28  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).▪▪ The generation of iPSC from fibroblasts has completely revolutionized the field of cell replacement therapies.
    • 29  Nagy A, Nagy K: The mysteries of induced pluripotency: where will they lead? Nat. Methods7(1),22–24 (2010).
    • 30  Marchand R, Poirier LJ: Isthmic origin of neurons of the rat substantia nigra. Neuroscience9(2),373–381 (1983).
    • 31  Wallen A, Perlmann T: Transcriptional control of dopamine neuron development. Ann. NY Acad. Sci.991,48–60 (2003).
    • 32  Puelles L, Rubenstein JL: Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci.26(9),469–476 (2003).
    • 33  Boyer LA, Lee TI, Cole MF et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122(6),947–956 (2005).
    • 34  Chew JL, Loh YH, Zhang W et al.: Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol.25(14),6031–6046 (2005).
    • 35  Mitsui K, Tokuzawa Y, Itoh H et al.: The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113(5),631–642 (2003).
    • 36  Nishikawa S-I, Jakt LM, Era T: Embryonic stem-cell culture as a tool for developmental cell biology. Nat. Rev. Mol. Cell. Biol.8(6),502–507 (2007).
    • 37  Woltjen K, Michael IP, Mohseni P et al.: Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239),766–770 (2009).
    • 38  Nichols J, Zevnik B, Anastassiadis K et al.: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95(3),379–391 (1998).
    • 39  Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G: Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells27(3),543–549 (2009).
    • 40  Wernig M, Meissner A, Foreman R et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151),318–324 (2007).
    • 41  Wernig M, Meissner A, Cassady JP, Jaenisch R: C-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell2(1),10–12 (2008).
    • 42  Bertrand N, Castro DS, Guillemot F: Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci.3(7),517–530 (2002).
    • 43  Ostenfeld T, Joly E, Tai YT et al.: Regional specification of rodent and human neurospheres. Brain Res. Dev. Brain Res.134(1–2),43–55 (2002).
    • 44  Parmar M, Skogh C, Bjorklund A, Campbell K: Regional specification of neurosphere cultures derived from subregions of the embryonic telencephalon. Mol. Cell Neurosci.21(4),645–656 (2002).
    • 45  Hitoshi S, Tropepe V, Ekker M, Van Der Kooy D: Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development129(1),233–244 (2002).
    • 46  Ericson J, Rashbass P, Schedl A et al.: Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell90(1),169–180 (1997).
    • 47  Stoykova A, Gruss P: Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci.14(3 Pt 2),1395–1412 (1994).
    • 48  Tanabe Y, Jessell TM: Diversity and pattern in the developing spinal cord. Science274(5290),1115–1123 (1996).
    • 49  Lee SK, Pfaff SL: Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat. Neurosci.4(Suppl.),1183–1191 (2001).
    • 50  Kittappa R, Chang WW, Awatramani RB, Mckay RD: The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol.5(12),e325 (2007).
    • 51  Rhinn M, Dierich A, Le Meur M, Ang S: Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development126(19),4295–4304 (1999).
    • 52  Araki I, Nakamura H: Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate. Development126(22),5127–5135 (1999).
    • 53  Matsunaga E, Araki I, Nakamura H: Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development127(11),2357–2365 (2000).
    • 54  Crossley PH, Martinez S, Martin GR: Midbrain development induced by FGF8 in the chick embryo. Nature380(6569),66–68 (1996).
    • 55  Shamim H, Mahmood R, Logan C, Doherty P, Lumsden A, Mason I: Sequential roles for FGF4, En1 and FGF8 in specification and regionalisation of the midbrain. Development126(5),945–959 (1999).
    • 56  Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E: Nested expression domains of four homeobox genes in developing rostral brain. Nature358(6388),687–690 (1992).
    • 57  Wassarman KM, Lewandoski M, Campbell K et al.: Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on gbx2 gene function. Development124(15),2923–2934 (1997).
    • 58  Broccoli V, Boncinelli E, Wurst W: The caudal limit of otx2 expression positions the isthmic organizer. Nature401(6749),164–168 (1999).
    • 59  Scholpp S, Lohs C, Brand M: Engrailed and FGF8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development130(20),4881–4893 (2003).
    • 60  Okafuji T, Funahashi J, Nakamura H: Roles of Pax-2 in initiation of the chick tectal development. Brain Res. Dev. Brain Res.116(1),41–49 (1999).
    • 61  Funahashi J, Okafuji T, Ohuchi H, Noji S, Tanaka H, Nakamura H: Role of Pax-5 in the regulation of a mid-hindbrain organizer’s activity. Dev. Growth Differ.41(1),59–72 (1999).
    • 62  Lee SM, Danielian PS, Fritzsch B, McMahon AP: Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development124(5),959–969 (1997).
    • 63  Nakamura H: Regionalization of the optic tectum: combinations of gene expression that define the tectum. Trends Neurosci.24(1),32–39 (2001).
    • 64  Mastick GS, Davis NM, Andrew GL, Easter SS Jr: Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development124(10),1985–1997 (1997).
    • 65  Thompson JA, Lovicu FJ, Ziman M: Pax7 and superior collicular polarity: insights from Pax6 (Sey) mutant mice. Exp. Brain Res.178(3),316–325 (2007).
    • 66  Matsunaga E, Araki I, Nakamura H: Role of Pax3/7 in the tectum regionalization. Development128(20),4069–4077 (2001).
    • 67  Abeliovich A, Hammond R: Midbrain dopamine neuron differentiation: factors and fates. Dev. Biol.304(2),447–454 (2007).
    • 68  Perlmann T, Wallen-Mackenzie A: Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res.318(1),45–52 (2004).
    • 69  Levesque D, Rouillard C: Nur77 and retinoid X receptors: crucial factors in dopamine-related neuroadaptation. Trends Neurosci.30(1),22–30 (2007).
    • 70  Prakash N, Wurst W: Development of dopaminergic neurons in the mammalian brain. Cell. Mol. Life Sci.63(2),187–206 (2006).
    • 71  Chung S, Sonntag KC, Andersson T et al.: Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur. J. Neurosci.16(10),1829–1838 (2002).
    • 72  Kim JH, Auerbach JM, Rodriguez-Gomez JA et al.: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature418(6893),50–56 (2002).▪ Demonstrates the potential for the application of stem cells to generate dopamine-producing neurons that can be utilized in the treatment of Parkinson’s disease.
    • 73  Sonntag KC, Simantov R, Kim KS, Isacson O: Temporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation. Eur. J. Neurosci.19(5),1141–1152 (2004).
    • 74  Smidt MP, Burbach JPH: How to make a mesodiencephalic dopaminergic neuron. Nat. Rev. Neurosci.8(1),21–32 (2007).
    • 75  Smidt MP, Smits SM, Burbach JP: Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur. J. Pharmacol.480(1–3),75–88 (2003).
    • 76  Smidt MP, Smits SM, Bouwmeester H et al.: Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development131,1145–1155 (2004).
    • 77  Fluri DA, Baba MD, Fussenegger M: Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression in mammalian cells and mice. BMC Biotechnol.7,75 (2007).
    • 78  Varas F, Stadtfeld M, De Andres-Aguayo L et al.: Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells27(2),300–306 (2009).
    • 79  Zhou W, Freed CR: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells27(11),2667–2674 (2009).▪▪ While the advent of iPSCs has revolutionarized the field of cell replacement therapies, the delivery of key genetic factors will influence the future success and clinical translation. Development of technologies that enable the safe, predictable and controllable delivery of core genetic factors will be critical.
    • 80  Collinson JM, Chanas SA, Hill RE, West JD: Corneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6+/- mouse. Invest. Ophthalmol. Vis. Sci.45(4),1101–1108 (2004).
    • 81  Lesaffre B, Joliot A, Prochiantz A, Volovitch M: Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish. Neural Develop.2,2 (2007).
    • 82  Prochiantz A, Joliot A: Can transcription factors function as cell–cell signalling molecules? Nat. Rev. Mol. Cell. Biol.4(10),814–819 (2003).▪▪ While the advent of iPSCs has revolutionarized the field of cell replacement therapies, the delivery of key genetic factors will influence the future success and clinical translation. Development of technologies that enable the safe, predictable and controllable delivery of core genetic factors will be critical.
    • 83  Thomas M, Tyers P, Lazic SE, Barker RA, Beazley L, Ziman M: Graft outcomes influenced by co-expression of Pax7 in graft and host tissue. J. Anat.214(3),396–405 (2009).