We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Stem cells in genetic myelin disorders

    Kevin Kemp

    MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK

    Department of Neurology, Frenchay Hospital, Bristol, UK.

    ,
    Elizabeth Mallam

    MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK

    Department of Neurology, Frenchay Hospital, Bristol, UK.

    ,
    Neil Scolding

    MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK

    Department of Neurology, Frenchay Hospital, Bristol, UK.

    &
    Alastair Wilkins

    † Author for correspondence

    Department of Neurology, Frenchay Hospital, Bristol, UK.

    Published Online:https://doi.org/10.2217/rme.10.10

    The genetic myelin disorders are a range of diseases that manifest with severe neurological problems, often from infancy. It has been postulated for some time that stem cells might be an effective treatment for these disorders, primarily as agents to restore dysfunctional or lost myelin. Stem cells, however, may offer a wider range of therapeutic potential, for instance as vehicles to replace abnormal enzymes or genes, or to provide trophic support for residual CNS tissue. This article will review several of the more common genetic myelin disorders and currently available therapies, including bone marrow transplantation for adrenoleukodystrophy. Specific stem cell subtypes and their relevance to potential therapeutic use will be discussed and stem cell transplantation in animal model studies will also be reviewed.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Bielschowsfy M, Henneberg R: Über familiare diffuse sklerose (leukodystrophia cerebri prgressiva hereditaria). J. Psychol. Neurol.36,131–181 (1928).
    • Sakai N: Pathogenesis of leukodystrophy for Krabbe disease: molecular mechanism and clinical treatment. Brain Dev.31(7),485–487 (2009).
    • Moser HW, Mahmood A, Raymond GV: X-linked adrenoleukodystrophy. Nat. Clin. Pract. Neurol.3(3),140–151 (2007).▪▪ Thorough review of one of the most common genetic myelin disorders.
    • Korenke GC, Fuchs S, Krasemann E et al.: Cerebral adrenoleukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann. Neurol.40(2),254–257 (1996).
    • Eichler F, Van Haren K: Immune response in leukodystrophies. Pediatr. Neurol.37(4),235–244 (2007).
    • Moser HW, Moser AB, Naidu S, Bergin A: Clinical aspects of adrenoleukodystrophy and adrenomyeloneuropathy. Dev. Neurosci.13(4–5),254–261 (1991).
    • Moser HW, Moser AB, Hollandsworth K, Brereton NH, Raymond GV: “Lorenzo’s oil” therapy for X-linked adrenoleukodystrophy: rationale and current assessment of efficacy. J. Mol. Neurosci.33(1),105–113 (2007).
    • Duffner PK, Jalal K, Carter RL: The Hunter’s Hope Krabbe family database. Pediatr. Neurol.40(1),13–18 (2009).
    • Wenger DA, Rafi MA, Luzi P: Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum. Mutat.10(4),268–279 (1997).
    • 10  Tunici P, Pellegatta S, Finocchiaro G: The potential of stem cells for the treatment of brain tumors and globoid cell leukodystrophy. Cytotechnology41(2–3),93–101 (2003).
    • 11  Escolar ML, Poe MD, Provenzale JM et al.: Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N. Engl. J. Med.352(20),2069–2081 (2005).
    • 12  Poorthuis BJ, Wevers RA, Kleijer WJ et al.: The frequency of lysosomal storage diseases in The Netherlands. Hum. Genet.105(1–2),151–156 (1999).
    • 13  Ozkara HA, Topcu M: Sphingolipidoses in Turkey. Brain Dev.26(6),363–366 (2004).
    • 14  Biffi A, Lucchini G, Rovelli A, Sessa M: Metachromatic leukodystrophy: an overview of current and prospective treatments. Bone Marrow Transplant.42(Suppl. 2),S2–S6 (2008).
    • 15  Norton WT, Poduslo SE: Biochemical studies of metachromatic leukodystrophy in three siblings. Acta Neuropathol.57(2–3),188–196 (1982).
    • 16  Eng B, Nakamura LN, O’Reilly N et al.: Identification of nine novel arylsulfatase A (ARSA) gene mutations in patients with metachromatic leukodystrophy (MLD). Hum. Mutat.22(5),418–419 (2003).
    • 17  Faerber EN, Melvin J, Smergel EM: MRI appearances of metachromatic leukodystrophy. Pediatr. Radiol.29(9),669–672 (1999).
    • 18  Willard HF, Riordan JR: Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science230(4728),940–942 (1985).
    • 19  Greer JM, Lees MB: Myelin proteolipid protein – the first 50 years. Int. J. Biochem. Cell Biol.34(3),211–215 (2002).
    • 20  Garbern JY: Pelizaeus–Merzbacher disease: genetic and cellular pathogenesis. Cell Mol. Life Sci.64(1),50–65 (2007).
    • 21  Inoue K: PLP1-related inherited dysmyelinating disorders: Pelizaeus–Merzbacher disease and spastic paraplegia type 2. Neurogenetics6(1),1–16 (2005).
    • 22  Saugier-Veber P, Munnich A, Bonneau D et al.: X-linked spastic paraplegia and Pelizaeus–Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat. Genet.6(3),257–262 (1994).
    • 23  Vallstedt A, Klos JM, Ericson J: Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron45(1),55–67 (2005).
    • 24  Mallon BS, Shick HE, Kidd GJ, Macklin WB: Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J. Neurosci.22(3),876–885 (2002).
    • 25  Zhou Q, Anderson DJ: The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell109(1),61–73 (2002).
    • 26  Cai J, Qi Y, Hu X et al.: Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron45(1),41–53 (2005).
    • 27  Spassky N, Olivier C, Perez-Villegas E et al.: Single or multiple oligodendroglial lineages: a controversy. Glia29(2),143–148 (2000).
    • 28  Ben-Hur T, Goldman SA: Prospects of cell therapy for disorders of myelin. Ann. NY Acad. Sci.1142,218–249 (2008).
    • 29  Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A: Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci.26(30),7907–7918 (2006).
    • 30  Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB: Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci.11 (12),4357–4366 (1999).
    • 31  Picard-Riera N, Decker L, Delarasse C et al.: Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc. Natl Acad. Sci. USA99(20),13211–13216 (2002).
    • 32  De Marchis S, Fasolo A, Puche AC: Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J. Comp. Neurol.476(3),290–300 (2004).
    • 33  Eriksson PS, Perfilieva E, Bjork-Eriksson T et al.: Neurogenesis in the adult human hippocampus. Nat. Med.4(11),1313–1317 (1998).
    • 34  Roy NS, Wang S, Jiang L et al.: In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med.6(3),271–277 (2000).
    • 35  Bilican B, Fiore-Heriche C, Compston A, Allen ND, Chandran S: Induction of Olig2 precursors by FGF involves BMP signalling blockade at the Smad level. PLoS One3(8),e2863 (2008).
    • 36  Cheng X, Wang Y, He Q, Qiu M, Whittemore SR, Cao Q: Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells25(12),3204–3214 (2007).
    • 37  Kessaris N, Jamen F, Rubin LL, Richardson WD: Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development131(6),1289–1298 (2004).
    • 38  Nicolay DJ, Doucette JR, Nazarali AJ: Transcriptional control of oligodendrogenesis. Glia55(13),1287–1299 (2007).
    • 39  Watanabe M, Hadzic T, Nishiyama A: Transient upregulation of Nkx2.2 expression in oligodendrocyte lineage cells during remyelination. Glia46(3),311–322 (2004).
    • 40  Fancy SP, Zhao C, Franklin RJ: Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol. Cell. Neurosci.27(3),247–254 (2004).
    • 41  Sim FJ, Zhao C, Penderis J, Franklin RJ: The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J. Neurosci.22(7),2451–2459 (2002).
    • 42  Redwine JM, Armstrong RC: In vivo proliferation of oligodendrocyte progenitors expressing PDGFαR during early remyelination. J. Neurobiol.37(3),413–428 (1998).
    • 43  Dawson MR, Levine JM, Reynolds R: NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J. Neurosci. Res.61(5),471–479 (2000).
    • 44  Levine JM, Reynolds R: Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol.160(2),333–347 (1999).
    • 45  Dawson MR, Polito A, Levine JM, Reynolds R: NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci.24(2),476–488 (2003).
    • 46  Heins N, Lindahl A, Karlsson U et al.: Clonal derivation and characterization of human embryonic stem cell lines. J. Biotechnol.122(4),511–520 (2006).
    • 47  Heins N, Englund MC, Sjoblom C et al.: Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells22(3),367–376 (2004).
    • 48  Billon N, Jolicoeur C, Ying QL, Smith A, Raff M: Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J. Cell Sci.115(Pt 18),3657–3665 (2002).
    • 49  Reubinoff BE, Itsykson P, Turetsky T et al.: Neural progenitors from human embryonic stem cells. Nat. Biotechnol.19(12),1134–1140 (2001).
    • 50  Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol.19(12),1129–1133 (2001).
    • 51  Ben-Hur T, Idelson M, Khaner H et al.: Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells22(7),1246–1255 (2004).
    • 52  Chiba S, Iwasaki Y, Sekino H, Suzuki N: Transplantation of motoneuron-enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice. Cell Transplant.12(5),457–468 (2003).
    • 53  Keirstead HS, Nistor G, Bernal G et al.: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci.25(19),4694–4705 (2005).
    • 54  Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS: Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia49(3),385–396 (2005).
    • 55  Liu S, Qu Y, Stewart TJ et al.: Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl Acad. Sci. USA97(11),6126–6131 (2000).
    • 56  Lee H, Shamy GA, Elkabetz Y et al.: Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells25(8),1931–1939 (2007).
    • 57  Brustle O, Jones KN, Learish RD et al.: Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science285(5428),754–756 (1999).
    • 58  Perez-Bouza A, Glaser T, Brustle O: ES cell-derived glial precursors contribute to remyelination in acutely demyelinated spinal cord lesions. Brain Pathol.15(3),208–216 (2005).
    • 59  Zhang YW, Denham J, Thies RS: Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev.15(6),943–952 (2006).
    • 60  Pluchino S, Zanotti L, Rossi B et al.: Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature436(7048),266–271 (2005).
    • 61  Lu P, Jones LL, Snyder EY, Tuszynski MH: Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol.181(2),115–129 (2003).
    • 62  Kawabata K, Migita M, Mochizuki H et al.: Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res.1094(1),13–23 (2006).
    • 63  Lacorazza HD, Flax JD, Snyder EY, Jendoubi M: Expression of human β-hexosaminidase α-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat. Med.2(4),424–429 (1996).
    • 64  Klein D, Schmandt T, Muth-Kohne E et al.: Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. Gene Ther.13(24),1686–1695 (2006).
    • 65  Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR: Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. (2009).
    • 66  Cao F, van der Bogt KE, Sadrzadeh A et al.: Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev.16(6),883–891 (2007).
    • 67  Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv. Cancer Res.100,133–158 (2008).
    • 68  Bjorklund LM, Sanchez-Pernaute R, Chung S et al.: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA99(4),2344–2349 (2002).
    • 69  Li L, Baroja ML, Majumdar A et al.: Human embryonic stem cells possess immune-privileged properties. Stem Cells22(4),448–456 (2004).
    • 70  Grinnemo KH, Kumagai-Braesch M, Mansson-Broberg A et al.: Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod. Biomed. Online13(5),712–724 (2006).
    • 71  Nunes MC, Roy NS, Keyoung HM et al.: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med.9(4),439–447 (2003).
    • 72  Eftekharpour E, Karimi-Abdolrezaee S, Wang J, El Beheiry H, Morshead C, Fehlings MG: Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of Ranvier and improved axonal conduction. J. Neurosci.27(13),3416–3428 (2007).▪ Demonstrates that adult neural progenitor cell transplantation can result in functionally significant myelination in the CNS.
    • 73  Windrem MS, Roy NS, Wang J et al.: Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J. Neurosci. Res.69(6),966–975 (2002).
    • 74  Windrem MS, Nunes MC, Rashbaum WK et al.: Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat. Med.10(1),93–97 (2004).
    • 75  Svensson M, Wallstedt L, Janson AM, Frisen J: Neural stem cells in the adult human brain. Exp. Cell Res.253(2),733–736 (1999).
    • 76  Arsenijevic Y, Villemure JG, Brunet JF et al.: Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol.170(1),48–62 (2001).
    • 77  Kukekov VG, Laywell ED, Suslov O et al.: Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol.156(2),333–344 (1999).
    • 78  Dromard C, Guillon H, Rigau V et al.: Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro. J. Neurosci. Res.86(9),1916–1926 (2008).
    • 79  Mothe AJ, Tator CH: Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp. Neurol.213(1),176–190 (2008).
    • 80  Mothe AJ, Kulbatski I, Parr A, Mohareb M, Tator CH: Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord. Cell Transplant.17(7),735–751 (2008).
    • 81  Rietze RL, Reynolds BA: Neural stem cell isolation and characterization. Methods Enzymol.419,3–23 (2006).
    • 82  Pluchino S, Quattrini A, Brambilla E et al.: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature422(6933),688–694 (2003).
    • 83  Gensert JM, Goldman JE: Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron19(1),197–203 (1997).
    • 84  Marshall GP 2nd, Laywell ED, Zheng T, Steindler DA, Scott EW: In vitro-derived “neural stem cells” function as neural progenitors without the capacity for self-renewal. Stem Cells24(3),731–738 (2006).
    • 85  Dexter TM, Spooncer E: Growth and differentiation in the hemopoietic system. Annu. Rev. Cell Biol.3,423–441 (1987).
    • 86  Kobari L, Giarratana MC, Pflumio F, Izac B, Coulombel L, Douay L: CD133+ cell selection is an alternative to CD34+ cell selection for ex vivo expansion of hematopoietic stem cells. J. Hematother. Stem Cell Res.10(2),273–281 (2001).
    • 87  Rice CM, Scolding NJ: Adult stem cells for the treatment of neurological disease. Methods Mol. Biol.549,17–32 (2009).
    • 88  Lim ZY, Ho AY, Abrahams S et al.: Sustained neurological improvement following reduced-intensity conditioning allogeneic haematopoietic stem cell transplantation for late-onset Krabbe disease. Bone Marrow Transplant.41(9),831–832 (2008).
    • 89  Krivit W, Shapiro EG, Peters C et al.: Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N. Engl. J. Med.338(16),1119–1126 (1998).
    • 90  Pierson TM, Bonnemann CG, Finkel RS, Bunin N, Tennekoon GI: Umbilical cord blood transplantation for juvenile metachromatic leukodystrophy. Ann. Neurol.64(5),583–587 (2008).
    • 91  Krivit W: Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Semin. Immunopathol.26(1–2),119–132 (2004).
    • 92  Tokimasa S, Ohta H, Takizawa S et al.: Umbilical cord-blood transplantations from unrelated donors in patients with inherited metabolic diseases: single-institute experience. Pediatr. Transplant.12(6),672–676 (2008).
    • 93  Orchard PJ, Blazar BR, Wagner J, Charnas L, Krivit W, Tolar J: Hematopoietic cell therapy for metabolic disease. J. Pediatr.151(4),340–346 (2007).
    • 94  Gorg M, Wilck W, Granitzny B et al.: Stabilization of juvenile metachromatic leukodystrophy after bone marrow transplantation: a 13-year follow-up. J. Child Neurol.22(9),1139–1142 (2007).
    • 95  Boelens JJ: Trends in haematopoietic cell transplantation for inborn errors of metabolism. J. Inherit. Metab. Dis.29(2–3),413–420 (2006).
    • 96  Koshizuka S, Okada S, Okawa A et al.: Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J. Neuropathol. Exp. Neurol.63(1),64–72 (2004).
    • 97  Koda M, Okada S, Nakayama T et al.: Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport16(16),1763–1767 (2005).
    • 98  Zhao ZM, Li HJ, Liu HY et al.: Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant.13(2),113–122 (2004).
    • 99  Nishio Y, Koda M, Kamada T et al.: The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J. Neurosurg. Spine5(5),424–433 (2006).
    • 100  Wagers AJ, Sherwood RI, Christensen JL, Weissman IL: Little evidence for developmental plasticity of adult hematopoietic stem cells. Science297(5590),2256–2259 (2002).
    • 101  Herzog EL, Chai L, Krause DS: Plasticity of marrow-derived stem cells. Blood102(10),3483–3493 (2003).
    • 102  Ying QL, Nichols J, Evans EP, Smith AG: Changing potency by spontaneous fusion. Nature416(6880),545–548 (2002).
    • 103  Terada N, Hamazaki T, Oka M et al.: Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416(6880),542–545 (2002).
    • 104  Johansson CB, Youssef S, Koleckar K et al.: Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat. Cell Biol.10(5),575–583 (2008).▪ Demonstration that fusion between rodent hematopoietic stem cells and rodent Purkinje cells can occur at increased levels in the context of CNS or systemic inflammation.
    • 105  Nygren JM, Liuba K, Breitbach M et al.: Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat. Cell Biol.10(5),584–592 (2008).
    • 106  Weimann JM, Trejo A, Blau HM: Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplantation Nat. Cell Biol.5(11),959–966 (2003).
    • 107  Rice CM, Scolding NJ: Adult stem cells – reprogramming neurological repair? Lancet364(9429),193–199 (2004).
    • 108  Mahmood A, Raymond GV, Dubey P, Peters C, Moser HW: Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study. Lancet Neurol.6(8),687–692 (2007).▪▪ Comparison study to ensure that the survival benefit seen with hematopoietic cell transplantation in childhood cerebral X-linked adrenoleukodystrophy was caused by hematopoietic cell transplantation and not just a favorable prognosis associated with that subgroup of adrenoleukodystrophy.
    • 109  Hickey WF, Kimura H: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science239(4837),290–292 (1988).
    • 110  Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR, Krivit W: Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J. Neuropathol. Exp. Neurol.52(5),460–470 (1993).▪ Demonstrates that donor marrow-derived cells can cross the blood–brain barrier and enter the brain.
    • 111  Ito M, Blumberg BM, Mock DJ et al.: Potential environmental and host participants in the early white matter lesion of adreno-leukodystrophy: morphologic evidence for CD8 cytotoxic T cells, cytolysis of oligodendrocytes, and CD1-mediated lipid antigen presentation. J. Neuropathol. Exp. Neurol.60(10),1004–1019 (2001).
    • 112  Schonberger S, Roerig P, Schneider DT, Reifenberger G, Gobel U, Gartner J: Genotype and protein expression after bone marrow transplantation for adrenoleukodystrophy. Arch. Neurol.64(5),651–657 (2007).
    • 113  Aubourg P, Blanche S, Jambaque I et al.: Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N. Engl. J. Med.322(26),1860–1866 (1990).
    • 114  Shapiro E, Krivit W, Lockman L et al.: Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet356(9231),713–718 (2000).
    • 115  Peters C, Charnas LR, Tan Y et al.: Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood104(3),881–888 (2004).
    • 116  Pittenger MF, Mackay AM, Beck SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science284(5411),143–147 (1999).
    • 117  Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM: Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood98(8),2396–2402 (2001).
    • 118  Erices A, Conget P, Minguell JJ: Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol.109(1),235–242 (2000).
    • 119  Prockop DJ, Marrow stromal cells as stem cells for nonhematopoietic tissues. Science276(5309),71–74 (1997).
    • 120  Zvaifler NJ, Marinova-Mutafchieva L, Adams G et al.: Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res.2(6),477–488 (2000).
    • 121  O’Donoghue K, Choolani M, Chan J et al.: Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol. Hum. Reprod.9(8),497–502 (2003).
    • 122  Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH: Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood103(5),1669–1675 (2004).
    • 123  Suva D, Garavaglia G, J. Menetrey et al.: Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J. Cell. Physiol.198(1),110–118 (2004).
    • 124  In’t Anker PS, Noort WA, Scherjon SA et al.: Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica88(8),845–852 (2003).
    • 125  Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol.107(2),275–281 (1999).
    • 126  Colter DC, Class R, DiGirolamo CM, Prockop DJ: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl Acad. Sci. USA97(7),3213–3218 (2000).
    • 127  Javazon EH, Colter DC, Schwarz EJ, Prockop DJ: Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells19(3),219–225 (2001).
    • 128  Haynesworth SE, Baber MA, Caplan AI: Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone13(1),69–80 (1992).
    • 129  Woodbury D, Schwarz EJ, Prockop DJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res.61(4),364–370 (2000).
    • 130  Galotto M, Berisso G, Delfino L et al.: Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp. Hematol.27(9),1460–1466 (1999).
    • 131  Wakitani S, Saito T, Caplan AI: Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve18(12),1417–1426 (1995).
    • 132  Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC: Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol.174(1),11–20 (2002).
    • 133  Woodbury D, Reynolds K, Black IB: Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res.69(6),908–917 (2002).
    • 134  Beyer Nardi N, da Silva Meirelles L: Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb. Exp. Pharmacol.174,249–282 (2006).
    • 135  Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM: Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl Acad. Sci. USA100(4),2088–2093 (2003).▪▪ First demonstration that human adult bone marrow can contribute to cells in the adult human brain after transplantation.
    • 136  Kennea NL, Waddington SN, Chan J et al.: Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle8(7),1069–1079 (2009).
    • 137  Black IB, Woodbury D: Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol. Dis.27(3),632–636 (2001).
    • 138  Yang J, Lou Q, Huang R, Shen L, Chen Z: Dorsal root ganglion neurons induce transdifferentiation of mesenchymal stem cells along a Schwann cell lineage. Neurosci. Lett.445(3),246–251 (2008).
    • 139  Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H: Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol. Neurobiol.26(7–8),1235–1252 (2006).
    • 140  Keilhoff G, Goihl A, Langnase K, Fansa H, Wolf G: Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur. J. Cell Biol.85(1),11–24 (2006).
    • 141  Mahay D, Terenghi G, Shawcross SG: Growth factors in mesenchymal stem cells following glial-cell differentiation. Biotechnol. Appl. Biochem.51(Pt 4),167–176 (2008).
    • 142  Bossolasco P, Cova L, Calzarossa C et al.: Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp. Neurol.193(2),312–325 (2005).
    • 143  Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC: Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev.17(6),1109–1121 (2008).
    • 144  Magrassi L, Grimaldi P, Ibatici A et al.: Induction and survival of binucleated Purkinje neurons by selective damage and aging. J. Neurosci.27(37),9885–9892 (2007).
    • 145  Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U: Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell. Biol.155(5),733–738 (2001).
    • 146  Bae JS, Han HS, Youn DH et al.: Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells25(5),1307–1316 (2007).
    • 147  Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N: Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. (2009) (Epub ahead of print).
    • 148  Arnhold S, Klein H, Klinz FJ et al.: Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur. J. Cell Biol.85(6),551–565 (2006).
    • 149  Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y: Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J. Neurosci. Res.86(5),1024–1035 (2008).
    • 150  Parr AM, Tator CH, Keating A: Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant.40(7),609–619 (2007).
    • 151  Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG: Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol.198(1),54–64 (2006).
    • 152  Zhao CP, Zhang C, Zhou SN et al.: Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy9(5),414–426 (2007).
    • 153  Himes BT, Neuhuber B, Coleman C et al.: Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil. Neural Repair20(2),278–296 (2006).
    • 154  Zhang J, Li Y, Chen J et al.: Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res.1030(1),19–27 (2004).
    • 155  Zhang J, Li Y, Lu M et al.: Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J. Neurosci. Res.84(3),587–595 (2006).
    • 156  Gordon D, Pavlovska G, Glover CP, Uney JB, Wraith D, Scolding NJ: Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci. Lett.448(1),71–73 (2008).
    • 157  Chopp M, Zhang XH, Li Y et al.: Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport11(13),3001–3005 (2000).
    • 158  Lee J, Kuroda S, Shichinohe H et al.: Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology23(3),169–180 (2003).
    • 159  Croitoru-Lamoury J, Williams KR, Lamoury FM et al.: Neural transplantation of human MSC and NT2 cells in the twitcher mouse model. Cytotherapy8(5),445–458 (2006).
    • 160  Akiyama Y, Radtke C, Kocsis JD: Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J. Neurosci.22(15),6623–6630 (2002).
    • 161  Akiyama Y, Radtke C, Honmou O, Kocsis JD: Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia39(3),229–236 (2002).
    • 162  Chopp M, Li Y: Treatment of neural injury with marrow stromal cells. Lancet Neurol.1(2),92–100 (2002).
    • 163  Mahmood A, Lu D, Lu M, Chopp M: Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery53(3),697–702; discussion 702–703 (2003).
    • 164  Mahmood A, Lu D, Qu C, Goussev A, Chopp M: Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery57(5),1026–1031; discussion 1026–1031 (2005).
    • 165  Bang OY, Lee JS, Lee PH, Lee G: Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol.57(6),874–882 (2005).
    • 166  Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K: Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin. Pharmacol. Ther.83(5),723–730 (2008).
    • 167  Mazzini L, Ferrero I, Luparello V et al.: Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol.223(1),229–237 (2010).
    • 168  Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W: Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant.30(4),215–222 (2002).
    • 169  Scolding N, Marks D, Rice C: Autologous mesenchymal bone marrow stem cells: practical considerations. J. Neurol. Sci.265(1–2),111–115 (2008).
    • 170  Bartholomew A, Sturgeon C, Siatskas M et al.: Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30(1),42–48 (2002).
    • 171  Beyth S, Borovsky Z, Mevorach D et al.: Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood105(5),2214–2219 (2005).
    • 172  Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O: HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol.31(10),890–896 (2003).
    • 173  Maitra B, Szekely E, Gjini K et al.: Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant.33(6),597–604 (2004).
    • 174  Kim YJ, Park HJ, Lee G et al.: Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia57(1),13–23 (2009).
    • 175  Zhou C, Zhang C, Chi S et al.: Effects of human marrow stromal cells on activation of microglial cells and production of inflammatory factors induced by lipopolysaccharide. Brain Res.1269,23–30 (2009).
    • 176  Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK: Neuroglial activation in Niemann-Pick Type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci. Lett.381(3),234–236 (2005).
    • 177  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).▪▪ Discovers that pluripotent stem cells can be directly generated from lineage-restricted cells.
    • 178  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • 179  Dimos JT, Rodolfa KT, Niakan KK et al.: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science321(5893),1218–1221 (2008).
    • 180  Park IH, Arora N, Huo H et al.: Disease-specific induced pluripotent stem cells. Cell134(5),877–886 (2008).
    • 181  Soldner F, Hockemeyer D, Beard C et al.: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5),964–977 (2009).
    • 182  Chamberlain SJ, Li XJ, Lalande M: Induced pluripotent stem (iPS) cells as in vitro models of human neurogenetic disorders. Neurogenetics9(4),227–235 (2008).
    • 183  Karumbayaram S, Novitch BG, Patterson M et al.: Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells27(4),806–811 (2009).
    • 184  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • 185  Nakagawa M, Koyanagi M, Tanabe K et al.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26(1),101–106 (2008).
    • 186  Mali P, Ye Z, Hommond HH et al.: Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells26(8),1998–2005 (2008).
    • 187  Wernig M, Zhao JP, Pruszak J et al.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl Acad. Sci. USA105(15),5856–5861 (2008).
    • 188  Hanna J, Wernig M, Markoulaki S et al.: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318(5858),1920–1923 (2007).
    • 189  Yandava BD, Billinghurst LL, Snyder EY: “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl Acad. Sci. USA96(12),7029–7034 (1999).
    • 190  Windrem MS, Schanz SJ, Guo M et al.: Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell2(6),553–565 (2008).
    • 191  Low HP, Greco B, Tanahashi Y et al.: Embryonic stem cell rescue of tremor and ataxia in myelin-deficient shiverer mice. J. Neurol. Sci.276(1–2),133–137 (2009).
    • 192  Dautigny A, Mattei MG, Morello D et al.: The structural gene coding for myelin-associated proteolipid protein is mutated in jimpy mice. Nature321(6073),867–869 (1986).
    • 193  Duncan ID: The PLP mutants from mouse to man. J. Neurol. Sci.228(2),204–205 (2005).
    • 194  Klugmann M, Schwab MH, Puhlhofer A et al.: Assembly of CNS myelin in the absence of proteolipid protein. Neuron18(1),59–70 (1997).
    • 195  Tontsch U, Archer DR, Dubois-Dalcq M, Duncan ID: Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc. Natl Acad. Sci. USA91(24),11616–11620 (1994).
    • 196  Espinosa de los Monteros A, Zhao P, Huang C et al.: Transplantation of CG4 oligodendrocyte progenitor cells in the myelin-deficient rat brain results in myelination of axons and enhanced oligodendroglial markers. J. Neurosci. Res.50(5),872–887 (1997).
    • 197  Lu JF, Lawler AM, Watkins PA et al.: A mouse model for X-linked adrenoleukodystrophy. Proc. Natl Acad. Sci. USA94(17),9366–9371 (1997).
    • 198  Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M, Mandel JL: Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum. Mol. Genet.11(5),499–505 (2002).
    • 199  Pujol A, Ferrer I, Camps C et al.: Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum. Mol. Genet.13(23),2997–3006 (2004).
    • 200  Ferrer I, Kapfhammer JP, Hindelang C et al.: Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. Hum. Mol. Genet.14(23),3565–3577 (2005).
    • 201  Mastroeni R, Bensadoun JC, Charvin D, Aebischer P, Pujol A, Raoul C: Insulin-like growth factor-1 and neurotrophin-3 gene therapy prevents motor decline in an X-linked adrenoleukodystrophy mouse model. Ann. Neurol.66(1),117–122 (2009).
    • 202  Kassmann CM, Lappe-Siefke C, Baes M et al.: Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet.39(8),969–976 (2007).
    • 203  Lappe-Siefke C, Goebbels S, Gravel M et al.: Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet.33(3),366–374 (2003).
    • 204  Irvine KA, Blakemore WF: Remyelination protects axons from demyelination-associated axon degeneration. Brain131(Pt 6),1464–1477 (2008).
    • 205  Kaye EM: Update on genetic disorders affecting white matter. Pedriat. Neurol.24,11–24 (2001).
    • 301  X-linked Adrenoleukodystrophy Database www.x-ald.nl