We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The effects of DNA methyltransferase inhibitors and histone deacetylase inhibitors on digit regeneration in mice

    Gang Wang

    Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.

    ,
    Stephen F Badylak

    McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA

    ,
    Ellen Heber-Katz

    The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104, USA

    ,
    Susan J Braunhut

    Department of Biological Sciences, University of Massachusetts–Lowell, Lowell, MA 01854, USA

    &
    Lorraine J Gudas

    † Author for correspondence

    Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.

    Published Online:https://doi.org/10.2217/rme.09.91

    Method: We injected two drugs that modify the epigenome, the DNA methyltransferase inhibitor 5-aza-2´-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor trichostatin A (TSA), alone or in combination, into C57Bl/6 mice subjected to amputation through the mid-second phalanx of the third digit. Wound-site tissue was collected. Results: We observed increased staining of the stem cell markers Rex1 (Zfp42) and stem cell antigen-1 at digit amputation sites from drug-treated mice. Samples from 5-aza-dC plus TSA and TSA treated mice also showed increased proliferating cell nuclear antigen staining, a measure of cell proliferation. Drug treatments increased Msx1, but not Cyp26a1 or ALDH1a2 (RALDH2) mRNA. Conclusion: 5-aza-dC and TSA treatments stimulated cell proliferation at the amputation site, possibly via increased expression of genes involved in digit development and regeneration.

    Bibliography

    • Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K: Limb regeneration in higher vertebrates: developing a roadmap. Anat. Rec. B New Anat.287(1),14–24 (2005).
    • Kragl M, Knapp D, Nacu E et al.: Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature460(7251),60–65 (2009).
    • Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT: Wnt/β-catenin signaling has an essential role in the initiation of limb regeneration. Dev. Biol.306(1),170–178 (2007).
    • Stocum DL: Regenerative biology and engineering: strategies for tissue restoration. Wound Repair Regen.6(4),276–290 (1998).
    • Bryant SV, Endo T, Gardiner DM: Vertebrate limb regeneration and the origin of limb stem cells. Int. J. Dev. Biol.46(7),887–896 (2002).
    • Brockes JP, Kumar A: Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science310(5756),1919–1923 (2005).
    • Borgens RB: Mice regrow the tips of their foretoes. Science217(4561),747–750 (1982).
    • Illingworth CM: Trapped fingers and amputated finger tips in children. J. Pediatr. Surg.9(6),853–858 (1974).
    • Neufeld DA, Zhao W: Bone regrowth after digit tip amputation in mice is equivalent in adults and neonates. Wound Repair Regen.3(4),461–466 (1995).
    • 10  Reginelli AD, Wang YQ, Sassoon D, Muneoka K: Digit tip regeneration correlates with regions of msx1 (hox 7) expression in fetal and newborn mice. Development121(4),1065–1076 (1995).
    • 11  Han M, Yang X, Lee J, Allan CH, Muneoka K: Development and regeneration of the neonatal digit tip in mice. Dev. Biol.315(1),125–135 (2008).
    • 12  Mohammad KS, Day FA, Neufeld DA: Bone growth is induced by nail transplantation in amputated proximal phalanges. Calcif. Tissue Int.65(5),408–410 (1999).
    • 13  Allan CH, Fleckman P, Fernandes RJ et al.: Tissue response and msx1 expression after human fetal digit tip amputation in vitro. Wound Repair Regen.14(4),398–404 (2006).
    • 14  Han M, Yang X, Farrington JE, Muneoka K: Digit regeneration is regulated by msx1 and BMP4 in fetal mice. Development130(21),5123–5132 (2003).
    • 15  Masaki H, Ide H: Regeneration potency of mouse limbs. Dev. Growth Differ.49(2),89–98 (2007).
    • 16  Chadwick RB, Bu L, Yu H et al.: Digit tip regrowth and differential gene expression in MRL/Mpj, DBA/2, and C57BL/6 mice. Wound Repair Regen.15(2),275–284 (2007).
    • 17  Yakushiji N, Suzuki M, Satoh A et al.: Correlation between shh expression and DNA methylation status of the limb-specific shh enhancer region during limb regeneration in amphibians. Dev. Biol.312(1),171–182 (2007).
    • 18  Yakushiji N, Yokoyama H, Tamura K: Repatterning in amphibian limb regeneration: a model for study of genetic and epigenetic control of organ regeneration. Semin. Cell Dev. Biol.20(5),565–574 (2009).
    • 19  Vigushin DM, Ali S, Pace PE et al.: Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res.7(4),971–976 (2001).
    • 20  Liu T, Kuljaca S, Tee A, Marshall GM: Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat. Rev.32(3),157–165 (2006).
    • 21  Schroeder TM, Westendorf JJ: Histone deacetylase inhibitors promote osteoblast maturation. J. Bone Miner. Res.20(12),2254–2263 (2005).
    • 22  De Boer J, Licht R, Bongers M, Van Der Klundert T, Arends R, Van Blitterswijk C: Inhibition of histone acetylation as a tool in bone tissue engineering. Tissue Eng.12(10),2927–2937 (2006).
    • 23  Yildirim F, Gertz K, Kronenberg G et al.: Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp. Neurol.210(2),531–542 (2008).
    • 24  Bar-Sela G, Jacobs KM, Gius D: Histone deacetylase inhibitor and demethylating agent chromatin compaction and the radiation response by cancer cells. Cancer J.13(1),65–69 (2007).
    • 25  Mongan NP, Gudas LJ: Valproic acid, in combination with all-trans retinoic acid and 5-aza-2´-deoxycytidine, restores expression of silenced RARβ2 in breast cancer cells. Mol. Cancer Ther.4(3),477–486 (2005).
    • 26  Marquez VE, Kelley JA, Agbaria R et al.: Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. Ann. NY Acad. Sci.1058,246–254 (2005).
    • 27  Gal-Yam EN, Saito Y, Egger G, Jones PA: Cancer epigenetics: modifications, screening, and therapy. Annu. Rev. Med.59,267–280 (2008).
    • 28  Ghoshal K, Bai S: DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc)43(6),395–422 (2007).
    • 29  Horswill MA, Narayan M, Warejcka DJ, Cirillo LA, Twining SS: Epigenetic silencing of maspin expression occurs early in the conversion of keratocytes to fibroblasts. Exp. Eye Res.86(4),586–600 (2008).
    • 30  Gore SD, Baylin S, Sugar E et al.: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res.66(12),6361–6369 (2006).
    • 31  Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B et al.: Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia. Blood108(10),3271–3279 (2006).
    • 32  Hurtubise A, Momparler RL: Effect of histone deacetylase inhibitor LAQ824 on antineoplastic action of 5-aza-2´-deoxycytidine (decitabine) on human breast carcinoma cells. Cancer Chemother. Pharmacol.58(5),618–625 (2006).
    • 33  Huangfu D, Maehr R, Guo W et al.: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26(7),795–797 (2008).
    • 34  Montanaro F, Liadaki K, Volinski J, Flint A, Kunkel LM: Skeletal muscle engraftment potential of adult mouse skin side population cells. Proc. Natl Acad. Sci. USA100(16),9336–9341 (2003).
    • 35  Asakura A: Stem cells in adult skeletal muscle. Trends Cardiovasc. Med.13(3),123–128 (2003).
    • 36  Hosler BA, Larosa GJ, Grippo JF, Gudas LJ: Expression of rex-1, a gene containing zinc finger motifs, is rapidly reduced by retinoic acid in F9 teratocarcinoma cells. Mol. Cell Biol.9(12),5623–5629 (1989).
    • 37  Mongan NP, Martin KM, Gudas LJ: The putative human stem cell marker, rex-1 (ZFP42): structural classification and expression in normal human epithelial and carcinoma cell cultures. Mol. Carcinog.45(12),887–900 (2006).
    • 38  Mongan NP, Gudas LJ: Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation75(9),853–870 (2007).
    • 39  Scotland KB, Chen S, Sylvester R, Gudas LJ: Analysis of rex1 (ZFP42) function in embryonic stem cell differentiation. Dev. Dyn.238(8),1863–1877 (2009).
    • 40  Mccabe MT, Low JA, Daignault S, Imperiale MJ, Wojno KJ, Day ML: Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res.66(1),385–392 (2006).
    • 41  Tang XH, Vivero M, Gudas LJ: Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid. Exp. Cell. Res.314(1),38–51 (2008).
    • 42  Gillespie RF, Gudas LJ: Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARb(2), and Cyp26A1 in F9 embryonal carcinoma cells. J. Mol. Biol.372(2),298–316 (2007).
    • 43  Holte H, Suo Z, Smeland EB, Kvaloy S, Langholm R, Stokke T: Prognostic value of lymphoma-specific S-phase fraction compared with that of other cell proliferation markers. Acta Oncol.38(4),495–503 (1999).
    • 44  Rogers MB, Hosler BA, Gudas LJ: Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development113(3),815–824 (1991).
    • 45  Hosler BA, Rogers MB, Kozak CA, Gudas LJ: An octamer motif contributes to the expression of the retinoic acid-regulated zinc finger gene rex-1 (ZFP-42) in F9 teratocarcinoma cells. Mol. Cell. Biol.13(5),2919–2928 (1993).
    • 46  Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J: Stem cells. Setting standards for human embryonic stem cells. Science300(5621),913–916 (2003).
    • 47  Kashyap V, Rezende NC, Scotland KB et al.: Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the nanog, OCT4 and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell micro-RNAs. Stem Cells Devel.18(7),1093–1108 (2009).
    • 48  Short B, Brouard N, Driessen R, Simmons PJ: Prospective isolation of stromal progenitor cells from mouse BM. Cytotherapy3(5),407–408 (2001).
    • 49  Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ: Mesenchymal stem cells. Arch. Med. Res.34(6),565–571 (2003).
    • 50  Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA: Sca-1(POS) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol.245(1),42–56 (2002).
    • 51  Xin L, Lawson DA, Witte ON: The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc. Natl Acad. Sci. USA102(19),6942–6947 (2005).
    • 52  Burger PE, Xiong X, Coetzee S et al.: Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc. Natl Acad. Sci. USA102(20),7180–7185 (2005).
    • 53  Toma JG, Akhavan M, Fernandes KJ et al.: Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol.3(9),778–784 (2001).
    • 54  Fernandes KJ, Mckenzie IA, Mill P et al.: A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol.6(11),1082–1093 (2004).
    • 55  Oh H, Bradfute SB, Gallardo TD et al.: Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100(21),12313–12318 (2003).
    • 56  Matsuura K, Nagai T, Nishigaki N et al.: Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem.279(12),11384–11391 (2004).
    • 57  Petersen BE, Grossbard B, Hatch H, Pi L, Deng J, Scott EW: Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology37(3),632–640 (2003).
    • 58  Langton S, Gudas LJ: Cyp26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev. Biol.315(2),331–354 (2008).
    • 59  Loudig O, Maclean GA, Dore NL, Luu L, Petkovich M: Transcriptional co-operativity between distant retinoic acid response elements in regulation of Cyp26A1 inducibility. Biochem. J.392(Pt 1),241–248 (2005).
    • 60  Maden M, Hind M: Retinoic acid, a regeneration-inducing molecule. Dev. Dyn.226(2),237–244 (2003).
    • 61  Niederreither K, Abu-Abed S, Schuhbaur B, Petkovich M, Chambon P, Dolle P: Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat. Genet.31(1),84–88 (2002).
    • 62  Yashiro K, Zhao X, Uehara M et al.: Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev. Cell6(3),411–422 (2004).
    • 63  Zhao R, Daley GQ: From fibroblasts to IPS cells: induced pluripotency by defined factors. J. Cell. Biochem.105(4),949–955 (2008).
    • 64  Sandell LL, Sanderson BW, Moiseyev G et al.: RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev.21(9),1113–1124 (2007).
    • 65  Neufeld DA: Partial blastema formation after amputation in adult mice. J. Exp. Zool.212(1),31–36 (1980).
    • 66  Revardel JL, Chebouki F: Etude de la reponse a l’amputation des phalanges chez la souris: role morphogenetique des epitheliums, stimulation de la chondrogenese. Can. J. Zool.65,3166–3176 (1987).
    • 67  Yokoyama H: Initiation of limb regeneration: the critical steps for regenerative capacity. Dev. Growth Differ.50(1),13–22 (2008).
    • 68  Gardiner DM, Endo T, Bryant SV: The molecular basis of amphibian limb regeneration: integrating the old with the new. Semin. Cell Dev. Biol.13(5),345–352 (2002).
    • 69  Brockes JP, Kumar A: Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat. Rev. Mol. Cell. Biol.3(8),566–574 (2002).
    • 70  Nakatani Y, Nishidate M, Fujita M, Kawakami A, Kudo A: Migration of mesenchymal cell fated to blastema is necessary for fish fin regeneration. Dev. Growth Differ.50(2),71–83 (2008).
    • 71  Broughton G 2nd, Janis JE, Attinger CE: The basic science of wound healing. Plast. Reconstr. Surg.117(7 Suppl.),12S–34S (2006).
    • 72  Gurtner GC, Werner S, Barrandon Y, Longaker MT: Wound repair and regeneration. Nature453(7193),314–321 (2008).
    • 73  Bruder SP, Fink DJ, Caplan AI: Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell. Biochem.56(3),283–294 (1994).
    • 74  Jiang Y, Jahagirdar BN, Reinhardt RL et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418(6893),41–49 (2002).
    • 75  Zuk PA, Zhu M, Mizuno H et al.: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7(2),211–228 (2001).
    • 76  Tamaki T, Akatsuka A, Ando K et al.: Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J. Cell. Biol.157(4),571–577 (2002).
    • 77  Stocum DL: Stem cells in regenerative biology and medicine. Wound Repair Regen.9(6),429–442 (2001).
    • 78  Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl Acad. Sci. USA101(47),16659–16664 (2004).
    • 79  Kramer OH, Gottlicher M, Heinzel T: Histone deacetylase as a therapeutic target. Trends Endocrinol. Metab.12(7),294–300 (2001).
    • 80  Holmes C, Stanford WL: Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells25(6),1339–1347 (2007).
    • 81  Kafadar KA, Yi L, Ahmad Y, So L, Rossi F, Pavlath GK: Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration. Dev. Biol.326(1),47–59 (2009).
    • 82  Simon HG, Nelson C, Goff D, Laufer E, Morgan BA, Tabin C: Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs. Dev. Dyn.202(1),1–12 (1995).
    • 83  Odelberg SJ, Kollhoff A, Keating MT: Dedifferentiation of mammalian myotubes induced by Msx1. Cell103(7),1099–1109 (2000).
    • 84  White JA, Beckett-Jones B, Guo YD et al.: cDNA cloning of human retinoic acid-metabolizing enzyme (HP450RAI) identifies a novel family of cytochromes p450. J. Biol. Chem.272(30),18538–18541 (1997).
    • 85  Yokouchi Y, Ohsugi K, Sasaki H, Kuroiwa A: Chicken homeobox gene Msx-1: Structure, expression in limb buds and effect of retinoic acid. Development113(2),431–444 (1991).
    • 86  Wang Y, Sassoon D: Ectoderm–mesenchyme and mesenchyme–mesenchyme interactions regulate Msx-1 expression and cellular differentiation in the murine limb bud. Dev. Biol.168(2),374–382 (1995).
    • 87  Lateef H, Abatan OI, Aslam MN, Stevens MJ, Varani J: Topical pretreatment of diabetic rats with all-trans retinoic acid improves healing of subsequently induced abrasion wounds. Diabetes54(3),855–861 (2005).
    • 101  National Centre for Biotechnology Information, Gene Expression Omnibus www.ncbi.nlm.nih.gov/projects/geo/