We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease

    Daniel Seung Kim

    Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA

    ,
    Judit Marsillach

    Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA

    ,
    Clement E Furlong

    Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA

    &
    Gail P Jarvik

    * Author for correspondence

    Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA.

    Published Online:https://doi.org/10.2217/pgs.13.147

    PON1 is a key component of high-density lipoproteins (HDLs) and is at least partially responsible for HDL’s antioxidant/atheroprotective properties. PON1 is also associated with numerous human diseases, including cardiovascular disease, Parkinson’s disease and cancer. In addition, PON1 metabolizes a broad variety of substrates, including toxic organophosphorous compounds, statin adducts, glucocorticoids, the likely atherogenic L-homocysteine thiolactone and the quorum-sensing factor of Pseudomonas aeruginosa. Numerous cardiovascular and antidiabetic pharmacologic agents, dietary macronutrients, lifestyle factors and antioxidant supplements affect PON1 expression and enzyme activity levels. Owing to the importance of PON1 to HDL function and its individual association with diverse human diseases, pharmacogenomic interactions between PON1 and the various factors that alter its expression and activity may represent an important therapeutic target for future investigation.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Voight BF, Peloso GM, Orho-Melander M et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet380(9841),572–580 (2012).
    • AIM-HIGH Investigators, Boden WE, Probstfield JL et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med.365(24),2255–2267 (2011).
    • Draganov DI, La Du BN. Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedebergs Arch. Pharmacol.369(1),78–88 (2004).
    • Khersonsky O, Tawfik DS. Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry44(16),6371–6382 (2005).
    • Ozer EA, Pezzulo A, Shih DM et al. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol. Lett.253(1),29–37 (2005).▪ Details how PON1 (and PON2 and PON3) can influence severe lung infections through its lactonase hydrolysis of the Pseudomonas aeruginosa quorum sensing factor.
    • Stoltz DA, Ozer EA, Ng CJ et al. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am. J. Physiol. Lung Cell Mol. Physiol.292(4),L852–L860 (2007).
    • Stevens RC, Khateeb J, Rock W et al. Engineered recombinant human paraoxonase 1 (rHuPON1) purified from Escherichia coli protects against organophosphate poisoning. Proc. Natl Acad. Sci. USA105(35),12780–12784 (2008).▪▪ Details the bioengineering of a human recombinant PON1 enzyme with increased catalytic efficiency for organophosphorous (OP) compounds, which may one day be used as a protective measure against OP toxicity.
    • Mackness MI, Arrol S, Abbott C, Durrington PN. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis104(1–2),129–135 (1993).
    • Furlong CE, Suzuki SM, Stevens RC et al. Human PON1, a biomarker of risk of disease and exposure. Chem. Biol. Interact.187(1–3),355–361 (2010).
    • 10  Costa LG, Giordano G, Furlong CE. Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem. Pharmacol.81(3),337–344 (2011).
    • 11  Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am. J. Hum. Genet.35(6),1126–1138 (1983).
    • 12  Furlong CE. Paraoxonases: an Historical Perspective. In: The Paraoxonases: their Role in Disease Development and Xenobiotic Metabolism. Springer, NY, USA, 3–31 (2008).
    • 13  Hassett C, Richter RJ, Humbert R et al. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: the mature protein retains its signal sequence. Biochemistry30(42),10141–10149 (1991).
    • 14  Adkins S, Gan KN, Mody M, La Du BN. Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am. J. Hum. Genet.52(3),598–608 (1993).
    • 15  Humbert R, Adler DA, Disteche CM, Hassett C, Omiecinski CJ, Furlong CE. The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet.3(1),73–76 (1993).
    • 16  Li WF, Costa LG, Furlong CE. Serum paraoxonase status: a major factor in determining resistance to organophosphates. J. Toxicol. Environ. Health40(2–3),337–346 (1993).
    • 17  Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat. Genet.14(3),334–336 (1996).
    • 18  Jarvik GP, Rozek LS, Brophy VH et al. Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1192 or PON155 genotype. Arterioscler. Thromb. Vasc. Biol.20(11),2441–2447 (2000).
    • 19  Richter RJ, Jarvik GP, Furlong CE. Determination of paraoxonase 1 status without the use of toxic organophosphate substrates. Circ. Cardiovasc. Genet.1(2),147–152 (2008).
    • 20  Richter RJ, Jarvik GP, Furlong CE. Paraoxonase 1 (PON1) status and substrate hydrolysis. Toxicol. Appl. Pharmacol.235(1),1–9 (2009).
    • 21  Clendenning JB, Humbert R, Green ED, Wood C, Traver D, Furlong CE. Structural organization of the human PON1 gene. Genomics35(3),586–589 (1996).
    • 22  Leviev I, James RW. Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler. Thromb. Vasc. Biol.20(2),516–521 (2000).
    • 23  Brophy VH, Jampsa RL, Clendenning JB, McKinstry LA, Jarvik GP, Furlong CE. Effects of 5´ regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am. J. Hum. Genet.68(6),1428–1436 (2001).
    • 24  Suehiro T, Nakamura T, Inoue M et al. A polymorphism upstream from the human paraoxonase (PON1) gene and its association with PON1 expression. Atherosclerosis150(2),295–298 (2000).
    • 25  Kim DS, Burt AA, Ranchalis JE et al. Dietary cholesterol increases paraoxonase 1 enzyme activity. J. Lipid Res.53(11),2450–2458 (2012).▪▪ Details the various dietary, plasma and genetic factors that influence PON1 AREase activity in a cohort of 1402 subjects.
    • 26  Jarvik GP, Jampsa R, Richter RJ et al. Novel paraoxonase (PON1) nonsense and missense mutations predicted by functional genomic assay of PON1 status. Pharmacogenetics13(5),291–295 (2003).
    • 27  Kim DS, Burt AA, Ranchalis JE et al. Additional common polymorphisms in the PON gene cluster predict PON1 activity but not vascular disease. J. Lipids2012,476316 (2012).
    • 28  Besler C, Heinrich K, Rohrer L et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest.121(7),2693–2708 (2011).
    • 29  Marsillach J, Martínez-Vea A, Marcas L et al. Administration of exogenous erythropoietin β affects lipid peroxidation and serum paraoxonase-1 activity and concentration in predialysis patients with chronic renal disease and anaemia. Clin. Exp. Pharmacol. Physiol.34(4),347–349 (2007).
    • 30  Marsillach J, Ferré N, Vila MC et al. Serum paraoxonase-1 in chronic alcoholics: relationship with liver disease. Clin. Biochem.40(9–10),645–650 (2007).
    • 31  Parra S, Alonso-Villaverde C, Coll B et al. Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis194(1),175–181 (2007).
    • 32  Furlong CE, Richter RJ, Li WF et al. The functional consequences of polymorphisms in the human PON1 gene. In: Proteins and Cell Regulation. Mackness B, Mackness M, Aviram M, Paragh G (Eds). Springer, The Netherlands, 267–281 (2008).
    • 33  La Du BN. Future studies of low-activity PON1 phenotype subjects may reveal how PON1 protects against cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.23(8),1317–1318 (2003).
    • 34  Mackness M, Mackness B. Paraoxonase 1 and atherosclerosis: is the gene or the protein more important? Free Radic. Biol. Med.37(9),1317–1323 (2004).
    • 35  Aldridge WN. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem. J.53(1),110–117 (1953).
    • 36  Aldridge WN. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem. J.53(1),117–124 (1953).
    • 37  Main AR. The role of A-esterase in the acute toxicity of paraoxon, TEPP, and parathion. Can. J. Biochem. Physiol.34(2),197–216 (1956).
    • 38  Costa LG, McDonald BE, Murphy SD et al. Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats. Toxicol. Appl. Pharmacol.103(1),66–76 (1990).
    • 39  Li WF, Furlong CE, Costa LG. Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicol. Lett.76(3),219–226 (1995).
    • 40  Shih DM, Gu L, Xia YR et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature394(6690),284–287 (1998).▪ First report of a transgenic mouse lacking PON1, which resulted in an animal that had greatly increased rates of atherosclerosis and higher susceptibility to OP toxicity.
    • 41  Cole TB, Walter BJ, Shih DM et al. Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism. Pharmacogenet. Genomics15(8),589–598 (2005).
    • 42  Li WF, Costa LG, Richter RJ et al. Catalytic efficiency determines the in-vivo efficacy of PON1 for detoxifying organophosphorus compounds. Pharmacogenetics10(9),767–779 (2000).
    • 43  Jansen KL, Cole TB, Park SS, Furlong CE, Costa LG. Paraoxonase 1 (PON1) modulates the toxicity of mixed organophosphorus compounds. Toxicol. Appl. Pharmacol.236(2),142–153 (2009).
    • 44  Harel M, Aharoni A, Gaidukov L et al. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat. Struct. Mol. Biol.11(5),412–419 (2004).
    • 45  Sarkar M, Harsch CK, Matic GT et al. Solubilization and humanization of paraoxonase-1. J. Lipids2012,610937 (2012).
    • 46  Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J. Biol. Chem.275(6),3957–3962 (2000).
    • 47  Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res.46(6),1239–1247 (2005).▪ One of the most in-depth and thorough examinations of the specific substrate hydrolysis rates of each of the paraoxonase enzymes.
    • 48  Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett.286(1–2),152–154 (1991).
    • 49  McElveen J, Mackness MI, Colley CM, Peard T, Warner S, Walker CH. Distribution of paraoxon hydrolytic activity in the serum of patients after myocardial infarction. Clin. Chem.32(4),671–673 (1986).
    • 50  Mackness MI, Harty D, Bhatnagar D et al. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis86(2–3),193–199 (1991).
    • 51  Mackness B, Mackness M. Anti-inflammatory properties of paraoxonase-1 in atherosclerosis. In: Advances in Experimental Medicine and Biology. Reddy ST (Ed.). Humana Press, NY, USA, 143–151 (2010).
    • 52  Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest.101(8),1581–1590 (1998).
    • 53  Aviram M, Billecke S, Sorenson R et al. Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities selective action of human paraoxonase allozymes Q and R. Arterioscler. Thromb. Vasc. Biol.18(10),1617–1624 (1998).
    • 54  Watson AD, Berliner JA, Hama SY et al. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest.96(6),2882–2891 (1995).
    • 55  Shih DM, Xia YR, Wang XP et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem.275(23),17527–17535 (2000).
    • 56  Tward A, Xia YR, Wang XP et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation106(4),484–490 (2002).
    • 57  Wang M, Lang X, Zou L, Huang S, Xu Z. Four genetic polymorphisms of paraoxonase gene and risk of coronary heart disease: a meta-analysis based on 88 case–control studies. Atherosclerosis214(2),377–385 (2011).
    • 58  Wheeler JG, Keavney BD, Watkins H, Collins R, Danesh J. Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: meta-analysis of 43 studies. Lancet363(9410),689–695 (2004).
    • 59  Jarvik GP, Hatsukami TS, Carlson C et al. Paraoxonase activity, but not haplotype utilizing the linkage disequilibrium structure, predicts vascular disease. Arterioscler. Thromb. Vasc. Biol.23(8),1465–1471 (2003).
    • 60  Mackness MI, Walker CH, Carlson LA. Low A-esterase activity in serum of patients with fish-eye disease. Clin. Chem.33(4),587–588 (1987).
    • 61  Mackness MI, Peuchant E, Dumon MF, Walker CH, Clerc M. Absence of “A-”esterase activity in the serum of a patient with Tangier disease. Clin. Biochem.22(6),475–478 (1989).
    • 62  Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler. Thromb. Vasc. Biol.23(10),1881–1888 (2003).
    • 63  Razavi AE, Ani M, Pourfarzam M, Naderi GA. Associations between high density lipoprotein mean particle size and serum paraoxonase-1 activity. J. Res. Med. Sci.17(11),1020–1026 (2012).
    • 64  Deakin S, Leviev I, Gomaraschi M, Calabresi L, Franceschini G, James RW. Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. J. Biol. Chem.277(6),4301–4308 (2002).
    • 65  Sorenson RC, Bisgaier CL, Aviram M, Hsu C, Billecke S, La Du BN. Human serum paraoxonase/arylesterase’s retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: apolipoprotein A-I stabilizes activity. Arterioscler. Thromb. Vasc. Biol.19(9),2214–2225 (1999).
    • 66  Deakin SP, Bioletto S, Bochaton-Piallat ML, James RW. HDL-associated paraoxonase-1 can redistribute to cell membranes and influence sensitivity to oxidative stress. Free Radic. Biol. Med.50(1),102–109 (2011).
    • 67  Marsillach J, Mackness B, Mackness M et al. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic. Biol. Med.45(2),146–157 (2008).▪▪ First to demonstrate PON1 and PON3 expression in tissues where no prior detectable PON1 and PON3 cDNA expression had been previously reported, suggesting that high-density lipoprotein could act as a delivery vehicle for PON1 and PON3.
    • 68  Kondo I, Yamamoto M. Genetic polymorphism of paraoxonase 1 (PON1) and susceptibility to Parkinson’s disease. Brain Res.806(2),271–273 (1998).
    • 69  Akhmedova SN, Yakimovsky AK, Schwartz EI. Paraoxonase 1 Met–Leu 54 polymorphism is associated with Parkinson’s disease. J. Neurol. Sci.184(2),179–182 (2001).
    • 70  Zintzaras E, Hadjigeorgiou GM. Association of paraoxonase 1 gene polymorphisms with risk of Parkinson’s disease: a meta-analysis. J. Hum. Genet.49(9),474–481 (2004).
    • 71  Kelada SN, Costa-Mallen P, Checkoway H et al. Paraoxonase 1 promoter and coding region polymorphisms in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry74(4),546–547 (2003).
    • 72  Liu YL, Yang J, Zheng J et al. Paraoxonase 1 polymorphisms L55M and Q192R were not risk factors for Parkinson’s disease: a HuGE review and meta-analysis. Gene501(2),188–192 (2012).
    • 73  Giordano G, Tait L, Furlong CE, Cole TB, Kavanagh TJ, Costa LG. Gender differences in brain susceptibility to oxidative stress are mediated by levels of paraoxonase-2 expression. Free Radic. Biol. Med.58,98–108 (2013).▪ Details how females have higher levels of PON2 in neural tissue, which protects them from oxidative stress-mediated neural damage.
    • 74  Fang DH, Fan CH, Ji Q, Qi BX, Li J, Wang L. Differential effects of paraoxonase 1 (PON1) polymorphisms on cancer risk: evidence from 25 published studies. Mol. Biol. Rep.39(6),6801–6809 (2012).
    • 75  Saadat M. Paraoxonase 1 genetic polymorphisms and susceptibility to breast cancer: a meta-analysis. Cancer Epidemiol.36(2),e101–e103 (2012).
    • 76  Camps J, Marsillach J, Joven J. The paraoxonases: role in human diseases and methodological difficulties in measurement. Crit. Rev. Clin. Lab. Sci.46(2),83–106 (2009).
    • 77  Tougou K, Nakamura A, Watanabe S, Okuyama Y, Morino A. Paraoxonase has a major role in the hydrolysis of prulifloxacin (NM441), a prodrug of a new antibacterial agent. Drug Metab. Dispos.26(4),355–359 (1998).
    • 78  Biggadike K, Angell RM, Burgess CM et al. Selective plasma hydrolysis of glucocorticoid γ-lactones and cyclic carbonates by the enzyme paraoxonase: an ideal plasma inactivation mechanism. J. Med. Chem.43(1),19–21 (2000).
    • 79  Riedmaier S, Klein K, Winter S, Hofmann U, Schwab M, Zanger UM. Paraoxonase (PON1 and PON3) polymorphisms: impact on liver expression and atorvastatin-lactone hydrolysis. Front. Pharmacol.2,41 (2011).
    • 80  Bouman HJ, Schömig E, van Werkum JW et al. Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat. Med.17(1),110–116 (2011).
    • 81  Camps J, Joven J, Mackness B et al. Paraoxonase-1 and clopidogrel efficacy. Nat. Med.17(9),1041–1042 (2011).
    • 82  Dansette PM, Rosi J, Bertho G, Mansuy D. Paraoxonase-1 and clopidogrel efficacy. Nat. Med.17(9),1040–1041; author reply 1042–1044 (2011).
    • 83  Dansette PM, Rosi J, Bertho G, Mansuy D. Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer. Chem. Res. Toxicol.25(2),348–356 (2012).
    • 84  Tuffal G, Roy S, Lavisse M et al. An improved method for specific and quantitative determination of the clopidogrel active metabolite isomers in human plasma. Thromb. Haemost.105(4),696–705 (2011).
    • 85  Reny JL, Combescure C, Daali Y, Fontana P, PON1 meta-analysis group. Influence of the paraoxonase-1 Q192R genetic variant on clopidogrel responsiveness and recurrent cardiovascular events: a systematic review and meta-analysis. J. Thromb. Haemost.10(7),1242–1251 (2012).
    • 86  Ecobichon DJ, Stephens DS. Perinatal development of human blood esterases. Clin. Pharmacol. Ther.14(1),41–47 (1973).
    • 87  Cole TB, Jampsa RL, Walter BJ et al. Expression of human paraoxonase (PON1) during development. Pharmacogenetics13(6),357–364 (2003).
    • 88  Milochevitch C, Khalil A. Study of the paraoxonase and platelet-activating factor acetylhydrolase activities with aging. Prostaglandins Leukot. Essent. Fatty Acids65(5–6),241–246 (2001).
    • 89  Wehner JM, Murphy-Erdosh C, Smolen A, Smolen TN. Genetic variation in paraoxonase activity and sensitivity to diisopropylphosphofluoridate in inbred mice. Pharmacol. Biochem. Behav.28(2),317–320 (1987).
    • 90  Fenkci IV, Serteser M, Fenkci S, Akyol AM. Effects of intranasal estradiol treatment on serum paraoxonase and lipids in healthy, postmenopausal women. Gynecol. Obstet. Invest.61(4),203–207 (2006).
    • 91  Sutherland WH, Manning PJ, de Jong SA, Allum AR, Jones SD, Williams SM. Hormone-replacement therapy increases serum paraoxonase arylesterase activity in diabetic postmenopausal women. Metab. Clin. Exp.50(3),319–324 (2001).
    • 92  bin Ali A, Zhang Q, Lim YK, Fang D, Retnam L, Lim SK. Expression of major HDL-associated antioxidant PON-1 is gender dependent and regulated during inflammation. Free Radic. Biol. Med.34(7),824–829 (2003).
    • 93  Cheng X, Klaassen CD. Hormonal and chemical regulation of paraoxonases in mice. J. Pharmacol. Exp. Ther.342(3),688–695 (2012).
    • 94  Ahmad S, Scott JE. Estradiol enhances cell-associated paraoxonase 1 (PON1) activity in vitro without altering PON1 expression. Biochem. Biophys. Res. Commun.397(3),441–446 (2010).
    • 95  van der Gaag MS, van Tol A, Scheek LM et al. Daily moderate alcohol consumption increases serum paraoxonase activity; a diet-controlled, randomised intervention study in middle-aged men. Atherosclerosis147(2),405–410 (1999).
    • 96  Sierksma A, van der Gaag MS, van Tol A, James RW, Hendriks HF. Kinetics of HDL cholesterol and paraoxonase activity in moderate alcohol consumers. Alcohol Clin. Exp. Res.26(9),1430–1435 (2002).
    • 97  Sarandol E, Serdar Z, Dirican M, Şafak Ö. Effects of red wine consumption on serum paraoxonase/arylesterase activities and on lipoprotein oxidizability in healthy-men. J. Nutr. Biochem.14(9),507–512 (2003).
    • 98  Leckey LC, Garige M, Varatharajalu R et al. Quercetin and ethanol attenuate the progression of atherosclerotic plaques with concomitant up regulation of paraoxonase1 (PON1) gene expression and PON1 activity in LDLR-/- mice. Alcohol Clin. Exp. Res.34(9),1535–1542 (2010).
    • 99  Rao MN, Marmillot P, Gong M et al. Light, but not heavy alcohol drinking, stimulates paraoxonase by upregulating liver mRNA in rats and humans. Metab. Clin. Exp.52(10),1287–1294 (2003).
    • 100  Osaki F, Ikeda Y, Suehiro T et al. Roles of Sp1 and protein kinase C in regulation of human serum paraoxonase 1 (PON1) gene transcription in HepG2 cells. Atherosclerosis176(2),279–287 (2004).
    • 101  Nishio E, Watanabe Y. Cigarette smoke extract inhibits plasma paraoxonase activity by modification of the enzyme’s free thiols. Biochem. Biophys. Res. Commun.236(2),289–293 (1997).
    • 102  James RW, Leviev I, Righetti A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation101(19),2252–2257 (2000).
    • 103  Rainwater DL. Determinants of variation in serum paraoxonase enzyme activity in baboons. J. Lipid Res.46(7),1450–1456 (2005).
    • 104  Kudchodkar BJ, Lacko AG, Dory L, Fungwe TV. Dietary fat modulates serum paraoxonase 1 activity in rats. J. Nutr.130(10),2427–2433 (2000).
    • 105  Sutherland WH, Walker RJ, de Jong SA, van Rij AM, Phillips V, Walker HL. Reduced postprandial serum paraoxonase activity after a meal rich in used cooking fat. Arterioscler. Thromb. Vasc. Biol.19(5),1340–1347 (1999).
    • 106  de Roos NM, Schouten EG, Scheek LM, van Tol A, Katan MB. Replacement of dietary saturated fat with trans fat reduces serum paraoxonase activity in healthy men and women. Metab. Clin. Exp.51(12),1534–1537 (2002).
    • 107  Wallace AJ, Sutherland WH, Mann JI, Williams SM. The effect of meals rich in thermally stressed olive and safflower oils on postprandial serum paraoxonase activity in patients with diabetes. Eur. J. Clin. Nutr.55(11),951–958 (2001).
    • 108  Tomás M, Sentı́ M, Elosua R et al. Interaction between the Gln–Arg 192 variants of the paraoxonase gene and oleic acid intake as a determinant of high-density lipoprotein cholesterol and paraoxonase activity. Eur. J. Pharmacol.432(2),121–128 (2001).
    • 109  Nguyen SD, Sok DE. Beneficial effect of oleoylated lipids on paraoxonase 1: protection against oxidative inactivation and stabilization. Biochem. J.375(Pt 2),275–285 (2003).
    • 110  Mackness B, Mackness MI, Arrol S et al. Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis139(2),341–349 (1998).
    • 111  Ikeda Y, Suehiro T, Arii K, Kumon Y, Hashimoto K. High glucose induces transactivation of the human paraoxonase 1 gene in hepatocytes. Metab. Clin. Exp.57(12),1725–1732 (2008).
    • 112  Nguyen SD, Hung ND, Cheon-Ho P, Ree KM, Dai-Eun S. Oxidative inactivation of lactonase activity of purified human paraoxonase 1 (PON1). Biochim. Biophys. Acta1790(3),155–160 (2009).
    • 113  Ekinci D, Beydemir S. Purification of PON1 from human serum and assessment of enzyme kinetics against metal toxicity. Biol. Trace Elem. Res.135(1–3),112–120 (2009).
    • 114  Li WF, Pan MH, Chung MC, Ho CK, Chuang HY. Lead exposure is associated with decreased serum paraoxonase 1 (PON1) activity and genotypes. Environ. Health Perspect.114(8),1233–1236 (2006).
    • 115  Gonzalvo MC, Gil F, Hernández AF, Villanueva E, Pla A. Inhibition of paraoxonase activity in human liver microsomes by exposure to EDTA, metals and mercurials. Chem. Biol. Interact.105(3),169–179 (1997).
    • 116  Mirdamadi HZ, Sztanek F, Derdak Z, Seres I, Harangi M, Paragh G. The human paraoxonase-1 phenotype modifies the effect of statins on paraoxonase activity and lipid parameters. Br. J. Clin. Pharmacol.66(3),366–374 (2008).
    • 117  Harangi M, Mirdamadi HZ, Seres I et al. Atorvastatin effect on the distribution of high-density lipoprotein subfractions and human paraoxonase activity. Transl. Res.153(4),190–198 (2009).
    • 118  Kassai A, Illyés L, Mirdamadi HZ et al. The effect of atorvastatin therapy on lecithin:cholesterol acyltransferase, cholesteryl ester transfer protein and the antioxidant paraoxonase. Clin. Biochem.40(1–2),1–5 (2007).
    • 119  Deakin S, Leviev I, Guernier S, James RW. Simvastatin modulates expression of the PON1 gene and increases serum paraoxonase: a role for sterol regulatory element-binding protein-2. Arterioscler. Thromb. Vasc. Biol.23(11),2083–2089 (2003).
    • 120  Dullaart RPF, de Vries R, Voorbij HAM, Sluiter WJ, van Tol A. Serum paraoxonase-I activity is unaffected by short-term administration of simvastatin, bezafibrate, and their combination in Type 2 diabetes mellitus. Eur. J. Clin. Invest.39(3),200–203 (2009).
    • 121  Gouédard C, Koum-Besson N, Barouki R, Morel Y. Opposite regulation of the human paraoxonase-1 gene PON-1 by fenofibrate and statins. Mol. Pharmacol.63(4),945–956 (2003).
    • 122  Aviram M, Rosenblat M, Bisgaier CL, Newton RS. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis138(2),271–280 (1998).
    • 123  Ota K, Suehiro T, Arii K et al. Effect of pitavastatin on transactivation of human serum paraoxonase 1 gene. Metab. Clin. Exp.54(2),142–150 (2005).
    • 124  Arii K, Suehiro T, Ota K et al. Pitavastatin induces PON1 expression through p44/42 mitogen-activated protein kinase signaling cascade in Huh7 cells. Atherosclerosis202(2),439–445 (2009).
    • 125  Deakin S, Guernier S, James RW. Pharmacogenetic interaction between paraoxonase-1 gene promoter polymorphism C-107T and statin. Pharmacogenet. Genomics17(6),451–457 (2007).
    • 126  Sardo MA, Campo S, Bonaiuto M et al. Antioxidant effect of atorvastatin is independent of PON1 gene T (-107) C, Q192R and L55M polymorphisms in hypercholesterolaemic patients. Curr. Med. Res. Opin.21(5),777–784 (2005).
    • 127  Paragh G, Seres I, Harangi M et al. Ciprofibrate increases paraoxonase activity in patients with metabolic syndrome. Br. J. Clin. Pharmacol.61(6),694–701 (2006).
    • 128  Durrington PN, Mackness MI, Bhatnagar D et al. Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in type IIb hyperlipoproteinaemia. Atherosclerosis138(1),217–225 (1998).
    • 129  Hong SC, Zhao SP, Wu ZH. Probucol up-regulates paraoxonase 1 expression in hepatocytes of hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol.47(1),77–81 (2006).
    • 130  Turfaner N, Uzun H, Balci H et al. Ezetimibe therapy and its influence on oxidative stress and fibrinolytic activity. South Med. J.103(5),428–433 (2010).
    • 131  Cheng CC, Hsueh CM, Liang KW, Ting CT, Wen CL, Hsu SL. Role of JNK and c-Jun signaling pathway in regulation of human serum paraoxonase 1 gene transcription by berberine in human HepG2 cells. Eur. J. Pharmacol.650(2–3),519–525 (2011).
    • 132  Blatter-Garin MC, Kalix B, De Pree S, James RW. Aspirin use is associated with higher serum concentrations of the anti-oxidant enzyme, paraoxonase-1. Diabetologia46(4),593–594 (2003).
    • 133  Jaichander P, Selvarajan K, Garelnabi M, Parthasarathy S. Induction of paraoxonase 1 and apolipoprotein A-I gene expression by aspirin. J. Lipid Res.49(10),2142–2148 (2008).
    • 134  Kurban S, Mehmetoglu I. Effects of acetylsalicylic acid on serum paraoxonase activity, Ox-LDL, coenzyme Q10 and other oxidative stress markers in healthy volunteers. Clin. Biochem.43(3),287–290 (2010).
    • 135  Noll C, Messaoudi S, Milliez P, Samuel JL, Delcayre C, Janel N. Eplerenone administration has beneficial effect on hepatic paraoxonase 1 activity in diabetic mice. Atherosclerosis208(1),26–27 (2010).
    • 136  van Wijk J, Coll B, Cabezas MC et al. Rosiglitazone modulates fasting and post-prandial paraoxonase 1 activity in Type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol.33(12),1134–1137 (2006).
    • 137  Carreón-Torres E, Rendón-Sauer K, Monter-Garrido M et al. Rosiglitazone modifies HDL structure and increases HDL-apo AI synthesis and catabolic rates. Clin. Chim. Acta401(1–2),37–41 (2009).
    • 138  Ackerman Z, Oron-Herman M, Pappo O et al. Hepatic effects of rosiglitazone in rats with the metabolic syndrome. Basic Clin. Pharmacol. Toxicol.107(2),663–668 (2010).
    • 139  Wójcicka G, Jamroz-Wiśniewska A, Marciniak A, Łowicka E, Bełtowski J. The differentiating effect of glimepiride and glibenclamide on paraoxonase 1 and platelet-activating factor acetylohydrolase activity. Life Sci.87(3–4),126–132 (2010).
    • 140  Aviram M, Rosenblat M, Billecke S et al. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic. Biol. Med.26(7–8),892–904 (1999).
    • 141  Jarvik GP, Tsai NT, McKinstry LA et al. Vitamin C and E intake is associated with increased paraoxonase activity. Arterioscler. Thromb. Vasc. Biol.22(8),1329–1333 (2002).
    • 142  Tsakiris S, Karikas GA, Parthimos T, Tsakiris T, Bakogiannis C, Schulpis KH. α-tocopherol supplementation prevents the exercise-induced reduction of serum paraoxonase 1/arylesterase activities in healthy individuals. Eur. J. Clin. Nutr.63(2),215–221 (2009).
    • 143  Kunes JP, Cordero-Koning KS, Lee LH, Lynch SM. Vitamin C attenuates hypochlorite-mediated loss of paraoxonase-1 activity from human plasma. Nutr. Res.29(2),114–122 (2009).
    • 144  Kleemola P, Freese R, Jauhiainen M, Pahlman R, Alfthan G, Mutanen M. Dietary determinants of serum paraoxonase activity in healthy humans. Atherosclerosis160(2),425–432 (2002).
    • 145  Boesch-Saadatmandi C, Egert S, Schrader C et al. Effect of quercetin on paraoxonase 1 activity – studies in cultured cells, mice and humans. J. Physiol. Pharmacol.61(1),99–105 (2010).
    • 146  Gouédard C, Barouki R, Morel Y. Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Mol. Cell. Biol.24(12),5209–5222 (2004).
    • 147  Gouédard C, Barouki R, Morel Y. Induction of the paraoxonase-1 gene expression by resveratrol. Arterioscler. Thromb. Vasc. Biol.24(12),2378–2383 (2004).
    • 148  Garige M, Gong M, Varatharajalu R, Lakshman MR. Quercetin up-regulates paraoxonase 1 gene expression via sterol regulatory element binding protein 2 that translocates from the endoplasmic reticulum to the nucleus where it specifically interacts with sterol responsive element-like sequence in paraoxonase 1 promoter in HuH7 liver cells. Metab. Clin. Exp.59(9),1372–1378 (2010).
    • 149  Kaplan M, Hayek T, Raz A et al. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J. Nutr.131(8),2082–2089 (2001).
    • 150  Aviram M, Dornfeld L, Rosenblat M et al. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr.71(5),1062–1076 (2000).
    • 151  Rock W, Rosenblat M, Miller-Lotan R, Levy AP, Elias M, Aviram M. Consumption of wonderful variety pomegranate juice and extract by diabetic patients increases paraoxonase 1 association with high-density lipoprotein and stimulates its catalytic activities. J. Agric. Food Chem.56(18),8704–8713 (2008).
    • 152  Khateeb J, Gantman A, Kreitenberg AJ, Aviram M, Fuhrman B. Paraoxonase 1 (PON1) expression in hepatocytes is upregulated by pomegranate polyphenols: a role for PPAR-γ pathway. Atherosclerosis208(1),119–125 (2010).
    • 153  Kim DS, Burt AA, Crosslin DR et al. Novel common and rare genetic determinants of paraoxonase activity: FTO, SERPINA12, and ITGAL. J. Lipid Res.54(2),552–560 (2013).▪ Details the first nonbiased genome-wide analysis of PON1 AREase activity, and finds novel genetic loci in FTO, SERPINA12 and ITGAL that influence PON1.
    • 154  ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) project. Science306(5696),636–640 (2004).
    • 155  Furlong CE, Richter RJ, Chapline C, Crabb JW. Purification of rabbit and human serum paraoxonase. Biochemistry30(42),10133–10140 (1991).