We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Allele and genotype frequencies of genes relevant to anti-epileptic drug therapy in Mexican-Mestizo healthy volunteers

    Ingrid Fricke-Galindo

    Doctorate in Biological & Health Sciences, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico

    ,
    Alberto Ortega-Vázquez

    Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico

    ,
    Nancy Monroy-Jaramillo

    Department of Neurogenetics & Molecular Biology, National Institute of Neurology & Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico

    ,
    Pedro Dorado

    CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain

    ,
    Helgi Jung-Cook

    Department of Pharmacy, Chemistry Faculty, National Autonomous University of Mexico, Mexico City, Mexico

    Department of Neuropharmacology, National Institute of Neurology & Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico

    ,
    Eva Peñas-Lledó

    CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain

    ,
    Adrián LLerena

    CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain

    &
    Marisol López-López

    *Author for correspondence:

    E-mail Address: marisollopezlopez@gmail.com

    Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico

    Published Online:https://doi.org/10.2217/pgs-2016-0078

    Aim: To determine allele and genotype frequencies of genes influencing anti-epileptic drug therapy in Mexican-Mestizo (MM) healthy volunteers, and to evaluate whether these are different from those reported for other populations. Subjects & methods: Thirty-nine variants of CYP3A5, EPHX1, NR1I2, HNF4A, UGT1A1, UGT2B7, ABCC2, RALBP1, SCN1A, SCN2A and GABRA1 were genotyped in 300 MM healthy volunteers. Results: All studied alleles were presented in MM, except for seven UGT1A1 variants (*68, 14, 15, 27 and 29). Allele and genotype frequencies showed interethnic variations when compared with European, Asian and African populations. Allele frequencies of greater than 30% were observed in ten genes. Conclusion: The results presented regarding the frequencies and interethnic differences of these polymorphisms should be taken into account for future pharmacogenetic studies of anti-epileptic drugs in MM patients with epilepsy.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51(5), 883–890 (2010).
    • 2 Bruno E, Bartoloni A, Zammarchi L et al. Epilepsy and neurocysticercosis in Latin America: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 7(10), e2480 (2013).
    • 3 Donnadieu RF, Aparicio RJ. SHM Vanegas (Epidemiologia de la epilepsia). In: Epilepsia Programa prioritario de epilepsia Sector Salud (Ed.). Ciudad de México, 7–12 (2011).
    • 4 San-Juan D, Alvarado-León S, Barraza-Díaz J, Dávila-Ávila NM, Ruíz AH, Anschel DJ. Prevalence of epilepsy, beliefs and attitudes in a rural community in Mexico: a door-to-door survey. Epilepsy Behav. 46, 140–143 (2015).
    • 5 Kwan P, Brodie MJ. Early identification of refractory epilepsy. N. Engl. J. Med. 342(5), 314–319 (2000).
    • 6 Löscher W. How to explain multidrug resistance in epilepsy? Epilepsy Curr. 5(3), 107–112 (2005).
    • 7 Löscher W, Potschka H. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2(1), 86–98 (2005).
    • 8 Evans WE, Mcleod HL. Pharmacogenomics – drug disposition, drug targets, and side effects. N. Engl. J. Med. 348(6), 538–549 (2003).
    • 9 Ingelman-Sundberg M, Sim SC, Gómez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther. 116(3), 496–526 (2007).
    • 10 Klotz U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin. Pharmacokinet. 46(4), 271–279 (2007).
    • 11 Dorado P, López-Torres E, Peñas-Lledó EM, Martínez-Antón J, Llerena A. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J. 13(4), 359–361 (2013).
    • 12 Ninomiya H, Mamiya K, Matsuo S, Ieiri I, Higuchi S, Tashiro N. Genetic polymorphism of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication. Ther. Drug Monit. 22(2), 230–232 (2000).
    • 13 Mamiya K, Ieiri I, Shimamoto J et al. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 39(12), 1317–1323 (1998).
    • 14 Martínez-Juárez IE, Lóopez-Zapata R, Gómez-Arias B et al. Epilepsia farmacorresistente: uso de la nueva definición y factores de riesgo relacionados. Estudio en población mexicana de un centro de tercer nivel. Rev. Neurol. 54(3), 159–166 (2012).
    • 15 Estrada-Castillejos M, Soler-Huerta E, Gómez-Márquez M, Molar-Castro F, Sáinz-Vázquez L, González-Contreras H. Epilepsia y su remisión en primer nivel de atención. Rev. Med. Inst. Mex. Seguro Soc. 48(2), 189–192 (2010).
    • 16 Goldenberg MM. Overview of drugs used for epilepsy and seizures etiology, diagnosis, and treatment. PT 35(7), 392–415 (2010).
    • 17 López M, Dorado P, Monroy N et al. Pharmacogenetics of the antiepileptic drugs phenytoin and lamotrigine. Drug Metabol. Drug Interact. 26(1), 5–12 (2011). •• Review article comprising the main pharmacogenes in the metabolism and transport of phenytoin and lamotrigine.
    • 18 Hung C-C, Lin C-J, Chen C-C, Chang C-J, Liou H-H. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther. Drug Monit. 26(5), 534–540 (2004).
    • 19 Ortega-Vázquez A, Dorado P, Fricke-Galindo I et al. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. Pharmacogenomics J. 16(3), 286–292 (2015). •• Also reported the allele and genotype frequencies of CYP2C9, CYP2C19 and ABCB1 variants.
    • 20 Lazarowski A, Czornyj L, Lubienieki F, Girardi E, Vazquez S, D'Giano C. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia 48(Suppl. 5), 140–149 (2007).
    • 21 Lazarowski A, Czornyj L. Potential role of multidrug resistant proteins in refractory epilepsy and antiepileptic drugs interactions. Drug Metabol. Drug Interact. 26(1), 21–26 (2011).
    • 22 Qu J, Zhou B-T, Yin J-Y et al. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci. Ther. 18(8), 647–651 (2012).
    • 23 Wang Y, Tang L, Pan J, Li J, Zhang Q, Chen B. The recessive model of MRP2 G1249A polymorphism decrease the risk of drug-resistant in Asian epilepsy: a systematic review and meta-analysis. Epilepsy Res. 112, 56–63 (2015).
    • 24 Grover S, Gourie-Devi M, Bala K, Sharma S, Kukreti R. Genetic association analysis of transporters identifies ABCC2 loci for seizure control in women with epilepsy on first-line antiepileptic drugs. Pharmacogenet. Genomics 22(6), 447–465 (2012).
    • 25 Puranik YG, Birnbaum AK, Marino SE et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 14(1), 35–45 (2013). •• Study of several gene polymorphisms involved in pharmacokinetics of carbamazepine in patients from two different ethnicity.
    • 26 Tate SK, Singh R, Hung C-C et al. A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet. Genomics 16(10), 721–726 (2006).
    • 27 Lakhan R, Kumari R, Misra UK, Kalita J, Pradhan S, Mittal B. Differential role of sodium channels SCN1A and SCN2A gene polymorphisms with epilepsy and multiple drug resistance in the north Indian population. Br. J. Clin. Pharmacol. 68(2), 214–220 (2009).
    • 28 Ma C-L, Jiao Z, Wu X-Y, Hong Z, Wu Z-Y, Zhong M-K. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics 16(13), 1499–1512 (2015).
    • 29 Thorn CF, Leckband SG, Kelsoe J et al. PharmGKB summary: carbamazepine pathway. Pharmacogenet. Genomics 21(12), 906–910 (2011). • Review of pharmacogenes involved in pharmacokinetics and pharmacodynamics of carbamazepine.
    • 30 Park P-W, Seo YH, Ahn JY, Kim K-A, Park J-Y. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J. Clin. Pharm. Ther. 34(5), 569–574 (2009).
    • 31 Seo T, Nakada N, Ueda N et al. Effect of CYP3A5*3 on carbamazepine pharmacokinetics in Japanese patients with epilepsy. Clin. Pharmacol. Ther. 79(5), 509–510 (2006).
    • 32 Magdalou J, Herber R, Bidault R, Siest G. In vitroN-glucuronidation of a novel antiepileptic drug, lamotrigine, by human liver microsomes. J. Pharmacol. Exp. Ther. 260(3), 1166–1173 (1992).
    • 33 Sánchez MB, Herranz JL, Leno C et al. UGT2B7 -161C>T polymorphism is associated with lamotrigine concentration-to-dose ratio in a multivariate study. Ther. Drug Monit. 32(2), 177–184 (2010).
    • 34 Sánchez MB, Herranz JL, Leno C et al. Genetic factors associated with drug-resistance of epilepsy: relevance of stratification by patient age and aetiology of epilepsy. Seizure 19(2), 93–101 (2010).
    • 35 Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40(1), 581–616 (2000).
    • 36 Sun Y, Zhuo W, Lin H et al. The influence of UGT2B7 genotype on valproic acid pharmacokinetics in Chinese epilepsy patients. Epilepsy Res. 114, 78–80 (2015).
    • 37 Ma H, Zhang T, Gong Z et al. Effect of UGT2B7 genetic variants on serum valproic acid concentration. Zhong Nan Da Xue Xue Bao. Yi Xue Ban. 38(8), 766–772 (2013).
    • 38 Tirona RG, Lee W, Leake BF et al. The orphan nuclear receptor HNF4α determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat. Med. 9(2), 220–224 (2003).
    • 39 Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 76(1), 22–76 (2005).
    • 40 Ortega VE, Meyers DA. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. J. Allergy Clin. Immunol. 133(1), 16–26 (2014). •• Highlights the importance of performing pharmacogenetic studies in populations with different ethnicity due to the complex genetic structure of several population, especially admixed populations.
    • 41 Fricke-Galindo I, Céspedes-Garro C, Rodrigues-Soares F et al. Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and ‘measured’ metabolic phenotypes across world populations. Pharmacogenomics J. 16(2), 113–123 (2016).
    • 42 LLerena A, Naranjo MEG, Rodrigues-Soares F, Peñas-LLedó EM, Fariñas H, Tarazona-Santos E. Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin. Drug Metab. Toxicol. 10(11), 1569–1583 (2014).
    • 43 Céspedes-Garro C, Fricke-Galindo I, Naranjo MEG et al. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin. Drug Metab. Toxicol. 11(12), 1893–1905 (2015).
    • 44 López M, Dorado P, Ortega A et al. Interethnic differences in UGT1A4 genetic polymorphisms between Mexican Mestizo and Spanish populations. Mol. Biol. Rep. 40(4), 3187–3192 (2013). • Allele and genotype frequencies of UGT1A4 variants in two different populations.
    • 45 Monroy-Jaramillo N, Fricke-Galindo I, Ortega-Vázquez A, Jung-Cook H, LLerena A, López-López M. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. Drug Metabol. Drug Interact. 29(2), 67–79 (2014).
    • 46 Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Interethnic variability of pharmacogenetic biomarkers in Mexican healthy volunteers: a report from the RIBEF (Ibero-American Network of Pharmacogenetics and Pharmacogenomics). Drug Metab. Pers. Ther. 31(2), 61–81 (2016). • Review article including the reported frequencies of pharmacogenetic biomarkers in Mexican-Mestizos.
    • 47 Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB. PharmGKB summary: phenytoin pathway. Pharmacogenet. Genomics 22(6), 466–470 (2012).
    • 48 Hsieh T-Y, Shiu T-Y, Chu N-F et al. Rapid molecular diagnosis of the Gilbert's syndrome-associated exon 1 mutation within the UGT1A1 gene. Genet. Mol. Res. 13(1), 670–679 (2014).
    • 49 GraphPad Softward. www.graphpad.com.
    • 50 Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl Acad. Sci. USA 95(14), 8170–8174 (1998).
    • 51 Barquera R, Zúñiga J, Hernández-Díaz R et al. HLA class I and class II haplotypes in admixed families from several regions of Mexico. Mol. Immunol. 45(4), 1171–1178 (2008).
    • 52 Moreno-Estrada A, Gignoux CR, Fernández-López JC et al. Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 344(6189), 1280–1285 (2014).
    • 53 Villegas-Torres B, Sánchez-Girón F, Jaramillo-Villafuerte K, Soberón X, González-Covarrubias V. Genotype frequencies of VKORC1 and CYP2C9 in native and Mestizo populations from Mexico, potential impact for coumarin dosing. Gene 558(2), 235–240 (2015).
    • 54 Pérez-Morales R, Méndez-Ramírez I, Castro-Hernández C, Martínez-Ramírez OC, Gonsebatt ME, Rubio J. Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: application of the additive model for cancer. Genet. Mol. Biol. 34(4), 546–552 (2011).
    • 55 Vargas-Alarcón G, Ramírez-Bello J, de la Peña A et al. Distribution of ABCB1, CYP3A5, CYP2C19, and P2RY12 gene polymorphisms in a Mexican-Mestizos population. Mol. Biol. Rep. 41(10), 7023–7029 (2014).
    • 56 Migration Policy Institute. Mexican Immigrants in the United States. migrationpolicy.org (2010). www.migrationpolicy.org/article/mexican-immigrants-united-states-0#11.
    • 57 Hung C-C, Chang W-L, Ho J-L et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 13(2), 159–169 (2012).
    • 58 Panomvana D, Traiyawong T, Towanabut S. Effect of CYP3A5 genotypes on the pharmacokinetics of Carbamazepine when used as monotherapy or co-administered with phenytoin, phenobarbital or valproic acid in Thai patients. J. Pharm. Pharm. Sci. 16(4), 502–510 (2013).
    • 59 Tanno LK, Kerr DS, dos Santos B et al. The absence of CYP3A5*3 is a protective factor to anticonvulsants hypersensitivity reactions: a case–control study in Brazilian subjects. PLoS ONE 10(8), e0136141 (2015).
    • 60 Daci A, Beretta G, Vllasaliu D et al. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLoS ONE 10(11), e0142408 (2015).
    • 61 Caruso A, Bellia C, Pivetti A et al. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers. Med. 7, 117–120 (2014).
    • 62 Azzato EM, Chen RA, Wacholder S, Chanock SJ, Klebanoff MA, Caporaso NE. Maternal EPHX1 polymorphisms and risk of phenytoin-induced congenital malformations. Pharmacogenet. Genomics 20(1), 58–63 (2010).
    • 63 He X-J, Jian L-Y, He X-L et al. Association of ABCB1, CYP3A4, EPHX1, FAS, SCN1A, MICA, and BAG6 polymorphisms with the risk of carbamazepine-induced Stevens–Johnson syndrome/toxic epidermal necrolysis in Chinese Han patients with epilepsy. Epilepsia 55(8), 1301–1306 (2014).
    • 64 Hustert E, Zibat A, Presecan-Siedel E et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos. 29(11), 1454–1459 (2001).
    • 65 Saruwatari J, Yoshida S, Tsuda Y et al. Pregnane X receptor and hepatocyte nuclear factor 4 a polymorphisms are cooperatively associated with carbamazepine autoinduction. Pharmacogenet. Genomics 24, 162–171 (2014).
    • 66 Innocenti F, Grimsley C, Das S et al. Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics 12(9), 725–733 (2002).
    • 67 Yamanaka H, Nakajima M, Hara Y et al. Urinary excretion of phenytoin metabolites, 5-(4′-hydroxyphenyl)-5-phenylhydantoin and its O-glucuronide in humans and analysis of genetic polymorphisms of UDP-glucuronosyltransferases. Drug Metab. Pharmacokinet. 20(2), 135–143 (2005).
    • 68 Inoue K, Suzuki E, Yazawa R et al. Influence of uridine diphosphate glucuronosyltransferase 2B7 -161C>T polymorphism on the concentration of valproic acid in pediatric epilepsy patients. Ther. Drug Monit. 36(3), 406–409 (2014).
    • 69 Singkham N, Towanabut S, Lertkachatarn S, Punyawudho B. Influence of the UGT2B7 -161C>T polymorphism on the population pharmacokinetics of lamotrigine in Thai patients. Eur. J. Clin. Pharmacol. 69(6), 1285–1291 (2013).
    • 70 Guo Y, Hu C, He X, Qiu F, Zhao L. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab. Pharmacokinet. 27(5), 536–542 (2012). • Study of pharmacogenetics of valproic acid metabolism.
    • 71 Liu L, Zhao L, Wang Q, Qiu F, Wu X, Ma Y. Influence of valproic acid concentration and polymorphism of UGT1A4*3, UGT2B7 -161C>T and UGT2B7*2 on serum concentration of lamotrigine in Chinese epileptic children. Eur. J. Clin. Pharmacol. 71(11), 1341–1347 (2015).
    • 72 UGT2B7 Allele Nomenclature (2015). www.pharmacogenomics.pha.ulaval.ca/wpcontent/uploads/2015/04/HAP-UGT2B7.htm.
    • 73 Chen P, Yan Q, Xu H, Lu A, Zhao P. The effects of ABCC2 G1249A polymorphism on the risk of resistance to antiepileptic drugs: a meta-analysis of the literature. Genet. Test. Mol. Biomarkers 18(2), 106–111 (2014).
    • 74 Ma C-L, Wu X-Y, Jiao Z, Wu Z-Y, Hong Z, Zhong M-K. Association of SCN1A, SCN2A and ABCC2 gene polymorphisms with the response to antiepileptic drugs in Chinese Han patients with epilepsy. Pharmacogenomics 15(10), 1323–1336 (2014).
    • 75 Sai K, Saito Y, Itoda M, Fukushima-Uesaka H. Genetic variations and haplotypes of ABCC2 encoding MRP2 in a Japanese population. Drug Metab. Pharmacokinet. 23(2), 139–147 (2008).
    • 76 Kim S, Jee Y, Lee J et al. ABCC2 haplotype is associated with antituberculosis drug-induced maculopapular eruption. Allergy Asthma Immunol. Res. 4(6), 362–366 (2012).
    • 77 Soranzo N, Kelly L, Martinian L et al. Lack of support for a role for RLIP76 (RALBP1) in response to treatment or predisposition to epilepsy. Epilepsia 48(4), 674–683 (2007).
    • 78 Leschziner GD, Jorgensen AL, Andrew T et al. The association between polymorphisms in RLIP76 and drug response in epilepsy. Pharmacogenomics 8(12), 1715–1722 (2007).
    • 79 Janigro D, Awasthi S, Awasthi YC et al. RLIP76 in AED drug resistance. Epilepsia 48(6), 1218–1219 (2007).
    • 80 Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A polymorphism and epilepsy. Br. J. Clin. Pharmacol. 66(2), 304–307 (2008).
    • 81 Tate SK, Depondt C, Sisodiya SM et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc. Natl Acad. Sci. 102(15), 5507–5512 (2005).
    • 82 Zhou B, Zhou Q, Yin J, Li G, Xu X, Qu J. Comprehensive analysis of the association of SCN1A gene polymorphisms with the retention rate of carbamazepine following monotherapy for new-onset focal seizures in the Chinese Han population. Clin. Exp. Pharmacol. Physiol. 39, 379–384 (2012).
    • 83 Ma C-L, Wu X-Y, Jiao Z, Hong Z, Wu Z-Y, Zhong M-K. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics 16(4), 347–360 (2015).
    • 84 Kwan P, Sang W, Ng H et al. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet. Genomics 18(11), 989–998 (2008).
    • 85 Zhou B-T, Zhou Q-H, Yin J-Y et al. Effects of SCN1A and GABA receptor genetic polymorphisms on carbamazepine tolerability and efficacy in Chinese patients with partial seizures: 2-year longitudinal clinical follow-up. CNS Neurosci. Ther. 18(7), 566–572 (2012).
    • 86 Kumari R, Lakhan R, Kalita J, Misra UK, Mittal B. Association of alpha subunit of GABAA receptor subtype gene polymorphisms with epilepsy susceptibility and drug resistance in north Indian population. Seizure 19(4), 237–241 (2010).