We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

In vivo biodistribution of nanoparticles

    Joao Paulo Mattos Almeida*

    Rice University, Department of Bioengineering, 6500 Main St., MS-142, Houston, TX, 77030, USA

    *Authors contributed equally

    Search for more papers by this author

    ,
    Allen L Chen*

    Rice University, Department of Bioengineering, 6500 Main St., MS-142, Houston, TX, 77030, USA

    *Authors contributed equally

    Search for more papers by this author

    ,
    Aaron Foster

    Center for Cell & Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital & The Methodist Hospital, 1102 Bates Street, Houston, TX 77030, USA

    &
    Published Online:https://doi.org/10.2217/nnm.11.79

    Nanoparticles have potential applications in diagnostics, imaging, gene and drug delivery and other types of therapy. Iron oxide nanoparticles, gold nanoparticles and quantum dots have all generated substantial interest and their properties and applications have been thoroughly studied. Yet, metal-containing particles raise biodistribution and toxicity concerns because they can be quickly cleared from the blood by the reticuloendothelial system and can remain in organs, such as the liver and spleen, for prolonged periods of time. Design considerations, such as size, shape, surface coating and dosing, can be manipulated to prolong blood circulation and enhance treatment efficacy, but nonspecific distribution has thus far been unavoidable. Renal excretion of nanoparticles is possible and is size dependent, but the need to incorporate coatings to particles for increased circulation can hinder such excretion. Further long-term studies are needed because recent work has shown varying degrees of in vivo toxicity as well as varying levels of nanoparticle excretion over time. The interaction of these particles with immune cells and their effect on the innate and adaptive immune response also needs further characterization. Finally, more systematic in vitro approaches are needed to both guide in vivo work and better correlate nanoparticle properties to their biological effects.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM. Nanoparticles for detection and diagnosis. Adv. Drug Deliv. Rev.62(3),316–328 (2010).
    • Kennedy LC, Bickford LR, Lewinski NA et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small7(2),169–183 (2011).
    • Kosaka N, McCann TE, Mitsunaga M, Choyke PL, Kobayashi H. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine (Lond.)5(5),765–776 (2010).
    • Veiseh O, Gunn JW, Zhang MQ. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev.62(3),284–304 (2010).
    • Laurent S, Boutry S, Mahieu I, Vander Elst L, Muller RN. Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr. Med. Chem.16(35),4712–4727 (2009).
    • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed.1(3),297–315 (2006).
    • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials26(18),3995–4021 (2005).
    • Michalet X, Pinaud FF, Bentolila LA et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science307(5709),538–544 (2005).
    • Zolnik BS, Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv. Drug Deliv. Rev.61(6),422–427 (2009).
    • 10  Li MG, Al-Jamal KT, Kostarelos K, Reineke J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano4(11),6303–6317 (2010).▪▪ Discusses the application of pharmacokinetic modeling to nanoparticles and also describes major physiological factors affecting nanoparticle biodistribution.
    • 11  Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5(4),505–515 (2008).
    • 12  Choi HS, Frangioni JV. Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol. Imaging9(6),291–310 (2010).
    • 13  Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2(1),99–112 (2010).
    • 14  Henrikson RC, Kaye GI, Mazurkiewicz JE. NMS Histology. Lippencott Williams & Wilkins, Baltimore, ML, USA (1997).
    • 15  Chrastina A, Schnitzer JE. Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3(4),421–437 (2011).
    • 16  Karmali PP, Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin. Drug Deliv.8(3),343–357 (2011).
    • 17  Lacerda SHD, Park JJ, Meuse C et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano4(1),365–379 (2010).
    • 18  Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev.61(6),428–437 (2009).
    • 19  Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nature Nanotechnology2(8),469–478 (2007).
    • 20  Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307(1),93–102 (2006).
    • 21  Guyton AC, Hall JE. Textbook of Medical Physiology. Elsevier, PA, USA (2006).
    • 22  Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm.5(4),487–495 (2008).
    • 23  Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.)3(5),703–717 (2008).
    • 24  Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53(2),283–318 (2001).
    • 25  Villaraza AJL, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem. Rev.110(5),2921–2959 (2010).
    • 26  Laurent S, Forge D, Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.108(6),2064–2110 (2008).
    • 27  Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond.)2(1),23–39 (2007).
    • 28  Vargas ER, Chen JW. Magnetic resonance imaging agents. In: Molecular Imaging: Principles and Practice. Weissleder R, Ross BD, Rehemtulla A, Gambhir SS (Eds). People’s Medical Publishing House-USA, Shelton, CT, USA (2010).
    • 29  Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron-oxides for MR-imaging. Adv. Drug Deliv. Rev.16(2–3),321–334 (1995).
    • 30  Chan DCF, Kirpotin DB, Bunn PA. Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater.122(1–3),374–378 (1993).
    • 31  Zhang GD, Liao YF, Baker I. Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Mater. Sci. Eng. C Mater. Biol. Appl.30(1),92–97 (2010).
    • 32  Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining; superparamagnetic iron oxides and transfection agents. Radiology228(2),480–487 (2003).
    • 33  Foy SP, Manthe RL, Foy ST, Dimitrijevic S, Krishnamurthy N, Labhasetwar V. Optical imaging and magnetic field targeting of magnetic nanoparticles in tumors. ACS Nano4(9),5217–5224 (2010).
    • 34  Liu HL, Hua MY, Yang HW et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl Acad. Sci. USA107(34),15205–15210 (2010).
    • 35  Bourrinet P, Bengele HH, Bonnemain B et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol.41(3),313–324 (2006).
    • 36  Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol.13(6),1266–1276 (2003).
    • 37  Soenen SJH, De Cuyper M. Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine (Lond.)5(8),1261–1275 (2010).▪ Excellent, critical review that discusses in vitro efforts in evaluating iron oxide nanoparticle toxicity through studies of cell–nanoparticle interactions. Explains the importance of considering iron oxide nanoparticle coating and degradation.
    • 38  Weissleder R, Stark DD, Engelstad BL et al. Superparamagnetic iron-oxide: pharmacokinetics and toxicity. Am. J. Roentgenol.152(1),167–173 (1989).
    • 39  Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul.13(3),245–255 (1996).
    • 40  Papisov MI, Bogdanov A, Schaffer B et al. Colloidal magnetic-resonance contrast agents: effect of particle surface on biodistribution. J. Magn. Magn. Mater.122(1–3),383–386 (1993).
    • 41  Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm.5(2),316–327 (2008).▪ Uses a variety of methods to characterize the biodistribution, clearance and biocompatibility of Pluronic®-oleic acid-coated iron oxide nanoparticles. Illustrates some key considerations in studying iron oxide nanoparticle biodistribution.
    • 42  Chen HW, Wang LY, Yeh J et al. Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-P γ MPS copolymer coating. Biomaterials31(20),5397–5407 (2010).
    • 43  Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials32(8),2183–2193 (2011).
    • 44  Larsen EKU, Nielsen T, Wittenborn T et al. Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano3(7),1947–1951 (2009).
    • 45  Sun CR, Du K, Fang C et al. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano4(4),2402–2410 (2010).
    • 46  Jain TK, Foy SP, Erokwu B, Dimitrijevic S, Flask CA, Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials30(35),6748–6756 (2009).
    • 47  Yu WW, Falkner JC, Yavuz CT, Colvin VL. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Comm. (20), 2306–2307 (2004).
    • 48  Yu WW, Chang E, Falkner JC et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc.129(10),2871–2879 (2007).
    • 49  Chen HW, Wu XY, Duan HW et al. Biocompatible polysiloxane-containing diblock copolymer PEO-b-P γ MPS for coating magnetic nanoparticles. ACS Appl. Mater. Interfaces1(10),2134–2140 (2009).
    • 50  Briley-Saebo K, Bjornerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res.316(3),315–323 (2004).
    • 51  Briley-Saebo K, Hustvedt SA, Haldorsen A, Bjornerud A. Long-term imaging effects in rat liver after a single injection of an iron oxide nanoparticle based MR contrast agent. J. Magn. Res. Imaging20(4),622–631 (2004).
    • 52  Levy M, Lagarde F, Maraloiu VA et al. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology21(39),11 (2010).
    • 53  Lawaczeck R, Bauer H, Frenzel T et al. Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting – pre-clinical profile of SH U555A. Acta Radiologica,38(4),584–597 (1997).
    • 54  Levy M, Luciani N, Alloyeau D et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials32,3988–3999 (2011).
    • 55  Lee MJE, Veiseh O, Bhattarai N et al. Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. Plos ONE5(3),8 (2010).
    • 56  Chertok B, Cole AJ, David AE, Yang VC. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol. Pharm.7(2),375–385 (2010).
    • 57  Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res.12(7),2313–2333 (2010).
    • 58  Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv.7(6),753–763 (2010).
    • 59  Huang XH, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine (Lond.)2(5),681–693 (2007).
    • 60  Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B110(14),7238–7248 (2006).
    • 61  Hirsch LR, Stafford RJ, Bankson JA et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA100(23),13549–13554 (2003).
    • 62  Han G, Ghosh P, Rotello VM. Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond.)2(1),113–123 (2007).
    • 63  Paciotti GF, Myer L, Weinreich D et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv.11(3),169–183 (2004).
    • 64  Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev.40(3),1647–1671 (2011).▪▪ Thorough review of gold nanoparticle toxicity and biodistribution studies in vitro and in vivo, providing critical analyses and trends of biodistribution studies starting in 1995.
    • 65  De Jong WH, Hagens WI, Krystek P, Burger MC, Sips A, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29(12),1912–1919 (2008).
    • 66  Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces66(2),274–280 (2008).
    • 67  Hirn S, Semmler-Behnke M, Schleh C et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm.77(3),407–416 (2011).
    • 68  Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine5(2),162–169 (2009).
    • 69  Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials31(8),2034–2042 (2010).
    • 70  Zhang GD, Yang Z, Lu W et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials30(10),1928–1936 (2009).
    • 71  Cho WS, Cho M, Jeong J et al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.245(1),116–123 (2010).
    • 72  Goel R, Shah N, Visaria R, Paciotti GF, Bischof JC. Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system. Nanomedicine (Lond.)4(4),401–410 (2009).
    • 73  Niidome T, Yamagata M, Okamoto Y et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release114(3),343–347 (2006).
    • 74  Arnida Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm.77(3),417–423 (2011).
    • 75  Sun YN, Wang CD, Zhang XM, Ren L, Tian XH. Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution. J. Nanosci. Nanotechnol.11(2),1210–1216 (2011).
    • 76  Lipka J, Semmler-Behnke M, Sperling RA et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials31(25),6574–6581 (2010).
    • 77  Johnston HJ, Semmler-Behnke M, Brown DM, Kreyling W, Tran L, Stone V. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol. Appl. Pharmacol.242(1),66–78 (2010).
    • 78  Semmler-Behnke M, Kreyling WG, Lipka J et al. Biodistribution of 1.4-and 18-nm gold particles in rats. Small4(12),2108–2111 (2008).
    • 79  Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett.4(8),858–864 (2009).
    • 80  Cho WS, Cho MJ, Jeong J et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.236(1),16–24 (2009).
    • 81  Terentyuk GS, Maslyakova GN, Suleymanova LV et al. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J. Biophotonics2(5),292–302 (2009).
    • 82  Choi HS, Liu W, Misra P et al. Renal clearance of quantum dots. Nat. Biotechnol.25(10),1165–1170 (2007).▪▪ Highly cited paper showing that quantum dots with a hydrodynamic diameter less than 5.5 nm can be renally excreted.
    • 83  Smith AM, Duan HW, Mohs AM, Nie SM. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev.60(11),1226–1240 (2008).
    • 84  Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22(8),969–976 (2004).
    • 85  Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA99(20),12617–12621 (2002).
    • 86  Cai WB, Shin DW, Chen K et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett.6(4),669–676 (2006).
    • 87  Diagaradjane P, Orenstein-Cardona JM, Colon-Casasnovas NE et al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res.14(3),731–741 (2008).
    • 88  Yang RH, Chang LW, Wu JP et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect.115(9),1339–1343 (2007).
    • 89  Chen Z, Chen H, Meng H et al. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol. Appl. Pharmacol.230(3),364–371 (2008).
    • 90  Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconj. Chem.15(1),79–86 (2004).
    • 91  Schipper ML, Cheng Z, Lee SW et al. MicroPET-based biodistribution of quantum dots in living mice. J. Nucl. Med.48(9),1511–1518 (2007).
    • 92  Schipper ML, Iyer G, Koh AL et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small5(1),126–134 (2009).
    • 93  Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett.9(6),2354–2359 (2009).
    • 94  Fischer HC, Liu LC, Pang KS, Chan WCW. Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv. Funct. Mater.16(10),1299–1305 (2006).
    • 95  Yong KT, Roy I, Ding H, Bergey EJ, Prasad PN. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small5(17),1997–2004 (2009).
    • 96  Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WCW. In vivo quantum-dot toxicity assessment. Small6(1),138–144 (2010).
    • 97  Mancini MC, Kairdolf BA, Smith AM, Nie SM. Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. J. Am. Chem. Soc.130(33),10836 (2008).
    • 98  Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir21(23),10644–10654 (2005).
    • 99  Ma JS, Kim WJ, Kim JJ et al. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-κB and IFN-β/STAT1 pathways in RAW264.7 cells. Nitric Oxide23(3),214–219 (2010).
    • 100  Yen HJ, Hsu SH, Tsai CL. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small5(13),1553–1561 (2009).
    • 101  Dobrovolskaia MA, Patri AK, Zheng J et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine5(2),106–117 (2009).
    • 102  Yeh CH, Hsiao JK, Wang JL, Sheu F. Immunological impact of magnetic nanoparticles (ferucarbotran) on murine peritoneal macrophages. J. Nanopart. Res.12(1),151–160 (2010).
    • 103  Villiers CL, Freitas H, Couderc R, Villiers MB, Marche PN. Analysis of the toxicity of gold nano particles on the immune system: Effect on dendritic cell functions. J. Nanopart. Res.12(1),55–60 (2010).
    • 104  Moore A, Marecos E, Bogdanov Jr A, Weissleder R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology214(2),568–574 (2000).
    • 105  Cubillos-Ruiz JR, Engle X, Scarlett UK et al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J. Clin. Invest.119(8),2231–2244 (2009).
    • 106  Cubillos-Ruiz JR, Hoopes J, Fiering S, Conejo-Garcia JR. Inflammatory and immune responses induced by nanomaterials: challenges and opportunities for future nanotherapies. Nanotechnology Perceptions5(3),195–203 (2009).
    • 107  Park J, Estrada A, Schwartz JA et al. Intra-organ biodistribution of gold nanoparticles using intrinsic two-photon-induced photoluminescence. Lasers Surg. Med.42(7),630–639 (2010).
    • 108  Hutter E, Boridy S, Labrecque S et al. Microglial response to gold nanoparticles. ACS Nano4(5),2595–2606 (2010).
    • 109  Rehberg M, Praetner M, Leite CF et al. Quantum dots modulate leukocyte adhesion and transmigration depending on their surface modification. Nano Lett.10(9),3656–3664 (2010).
    • 110  Hoshino A, Hanada S, Manabe N, Nakayama T, Yamamoto K. Immune response induced by fluorescent nanocrystal quantum dots in vitro and in vivo. IEEE Trans. Nanobioscience8(1),51–57 (2009).
    • 111  Chen BA, Jin N, Wang J et al. The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice. Int. J. Nanomed.5,593–599 (2010).
    • 112  Klippstein R, Pozo D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine6(4),523–529 (2010).
    • 113  Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R. Perturbational profiling of nanomaterial biologic activity. Proc. Natl Acad. Sci. USA105(21),7387–7392 (2008).
    • 114  Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Design13(34),3494–3504 (2007).
    • 115  Fourches D, Pu DQY, Tassa C et al. Quantitative nanostructure-activity relationship modeling. ACS Nano4(10),5703–5712 (2010).
    • 116  Espie P, Tytgat D, Sargentini-Maier ML, Poggesi I, Watelet JB. Physiologically based pharmacokinetics (PBPK). Drug Metab. Rev.41(3),391–407 (2009).