We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy

    Elnaz Yaghini

    National Medical Laser Centre, Division of Surgery & Interventional Science, UCL Medical School, University College London, Charles Bell House, 67–73 Riding House St, London, W1W 7EJ, UK.

    ,
    Alexander M Seifalian

    Centre for Nanotechnology, Biomaterials & Tissue Engineering, Division of Surgery & Interventional Science, UCL Medical School, University College London, London, UK

    &
    Alexander J MacRobert

    † Author for correspondence

    National Medical Laser Centre, Division of Surgery & Interventional Science, UCL Medical School, University College London, Charles Bell House, 67–73 Riding House St, London, W1W 7EJ, UK.

    Published Online:https://doi.org/10.2217/nnm.09.9

    Semiconductor quantum dots have received considerable interest in recent years as a result of their unique optical properties, leading to many applications in biology. This review examines their potential for photosensitization in photodynamic therapy compared with, and in combination with, conventional photosensitizing organic dyes. Photodynamic therapy is used for treating a range of malignant tumors and certain non-malignant pathologies, and conventional photosensitizers are based on organic dyes that are efficient generators of cytotoxic reactive oxygen species. By exploiting the unique optical properties of quantum dots, the conjugation of quantum dots with photosensitizers and targeting agents could provide a new class of versatile multifunctional nanoparticles for both diagnostic imaging and therapeutic applications.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Miyawaki A: Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell4(3),295–305 (2003).
    • Schrock E, du Manoir S, Veldman T et al.: Multicolor spectral karyotyping of human chromosomes. Science273(5274),494–497 (1996).
    • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods5(9),763–775 (2008).▪▪ Excellent review that compares the photophysical properties of quantum dots (QDs) with that of organic dyes.
    • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP: Semiconductor nanocrystals as fluorescent biological labels. Science281(5385),2013–2016 (1998).▪▪ One of the first reports of utilizing QDs in a biological application.
    • Chan WCW, Nie SM: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science281(5385),2016–2018 (1998).
    • Dabbousi BO, Rodriguez Viejo J, Mikulec FV et al.: (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B101(46),9463–9475 (1997).
    • Leatherdale CA, Woo WK, Mikulec FV, Bawendi MG: On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B106(31),7619–7622 (2002).
    • Alivisatos P: The use of nanocrystals in biological detection. Nat. Biotechnol.22(1),47–52 (2004).
    • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM: Biological applications of quantum dots. Biomaterials28(31),4717–4732 (2007).
    • 10  Zhang H, Yee D, Wang C: Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomed.3(1),83–91 (2008).
    • 11  Dolmans JG, Fukumura D, Jain RK: Photodynamic therapy for cancer. Nat. Rev. Cancer3(5),380–387 (2003).▪▪ Concise review of photodynamic therapy.
    • 12  Ochsner M: Photophysical and photobiological processes in the photodynamic therapy of tumors. J. Photochem. Photobiol. B Biol.39(1),1–18 (1997).
    • 13  Hopper C: Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol.1,212–219 (2000)
    • 14  Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M: In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob. Agents Chemother.47(3),932–940 (2003).
    • 15  Schuitmaker JJ, Bass P, van Leengoed LM, van der Meulen FW, Star WM, van Zandwijk N: Photodynamic therapy: a promising new modality for the treatment of cancer. J. Photochem. Photobiol. B Biol.34(1),3–12 (1996).
    • 16  Spikes JD: New trends in photobiology (invited review) – chlorins as photosensitizers in biology and medicine. J. Photochem. Photobiol. B Biol.6(3),259–274 (1990).
    • 17  Pandey RK: Recent advances in photodynamic therapy. J. Porphyrins Phthalocyanines4(4),368–373 (2000).
    • 18  Imahori H, Arimura M, Hanada T et al.: Photoactive three-dimensional monolayers: porphyrin-alkanethiolate-stabilized gold clusters. J. Am. Chem. Soc.123(2),335–336 (2001).
    • 19  Battah S, Balaratnam S, Casas A et al.: Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol. Cancer Ther.6(3),876–885 (2007).
    • 20  Hone DC, Walker PI, Evans-Gowing R et al.: Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir18(8),2985–2987 (2002).
    • 21  Roy I, Ohulchanskyy TY, Pudavar HE et al.: Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc.125(26),7860–7865 (2003).
    • 22  Wang SZ, Gao RM, Zhou FM, Selke M: Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mat. Chem.14(4),487–493 (2004).
    • 23  Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J, Russell DA: Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochem. Photobiol. Sci.5(8),727–734 (2006).
    • 24  Chen W: Nanoparticle self-lighting photodynamic therapy for cancer treatment. J. Biomed. Nanotechnol.4(4),369–376 (2008).
    • 25  Juzenas P, Chen W, Sun YP et al.: Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Del. Rev.60(15),1600–1614 (2008).
    • 26  Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC: Quantum dots in bio-imaging: revolution by the small. Biochem. Biophys. Res. Comm.329(4),1173–1177 (2005).
    • 27  Kunz L, Connelly JP, Woodhams JH, MacRobert AJ: Photodynamic modification of disulfonated aluminium phthalocyanine. fluorescence in a macrophage cell line. Photochem. Photobiol. Sci.6(9),940–948 (2007).
    • 28  Kovalev D, Fujii M: Silicon nanocrystals: photosensitizers for oxygen molecules. Adv. Mat.17(21),2531–2544 (2005).
    • 29  Ipe BI, Lehnig M, Niemeyer CM: On the generation of free radical species from quantum dots. Small1(7),706–709 (2005).
    • 30  Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D: Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med.83(5),377–385 (2005).
    • 31  Green M, Howman E: Semiconductor quantum dots and free radical induced DNA nicking. Chem. Comm. (1),121–123 (2005).
    • 32  Anas A, Akita H, Harashima H, Itoh T, Ishikawa M, Biju V: Photosensitized breakage and damage of DNA by CdSe–ZnS quantum dots. J. Phys. Chem B112(32),10005–10011 (2008).
    • 33  Lovric J, Cho SJ, Winnik FM, Maysinger D: Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol.12(11),1227–1234 (2005).
    • 34  Chan WH, Shiao NH, Lu PZ: CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett.167(3),191–200 (2006).
    • 35  Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM: Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir23(4),1974–1980 (2007).
    • 36  Forster T: 10th Spiers memorial lecture – transfer mechanisms of electronic excitation. Disc. Faraday Soc. (27),7–17 (1959).
    • 37  Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H: Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc.126(1),301–310 (2004).▪▪ Reports that QDs performing as donors can transfer their energy to proximal dye acceptors through the Förster resonance energy transfer mechanism.
    • 38  Kagan CR, Murray CB, Nirmal M, Bawendi MG: Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett.76,1517–1520 (1996).
    • 39  Kagan CR, Murray CB, Bawendi MG: Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B54(12),8633–8643 (1996).
    • 40  Willard DM, Carillo LL, Jung J, Van Orden A: CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett.1(9),469–474 (2001).
    • 41  Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I: Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J. Am. Chem. Soc.125(46),13918–13919 (2003).
    • 42  Clapp AR, Pons T, Medintz IL et al.: Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications. Adv. Mat.19(15),1921–1926 (2007).▪ Demonstrates the feasibility of performing two-photon excitation of QDs dots for Förster resonance energy transfer applications.
    • 43  Medintz IL, Trammell SA, Mattoussi H, Mauro JM: Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc.126(1),30–31 (2004).
    • 44  Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H: A reagentless biosensing assembly based on quantum dot-donor Forster resonance energy transfer. Adv. Mat.17(20),2450–2455 (2005).
    • 45  Tran PT, Goldman ER, Anderson GP, Mauro JM, Mattoussi H: Use of luminescent CdSe-ZnS nanocrystal bioconjugates in quantum dot-based nanosensors. Phys. Status Solidi B Basic Res.229(1),427–432 (2002).
    • 46  Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM: Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mat.2(9),630–638 (2003).
    • 47  Medintz IL, Clapp AR, Brunel FM et al.: Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mat.5(7),581–589 (2006).
    • 48  Mamedova NN, Kotov NA, Rogach AL, Studer J: Albumin–CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett.1(6),281–286 (2001).
    • 49  Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H: Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J. Am. Chem. Soc.127(4),1242–1250 (2005).
    • 50  Samia AC, Chen X, Burda C: Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc.125(51),15736–15737 (2003).▪ First report of utilizing QD–photosensitizer complexes as possible therapeutic agents for photodynamic therapy.
    • 51  Dayal S, Lou YB, Samia AC, Berlin JC, Kenney ME, Burda C: Observation of non-Förster-type energy-transfer behavior in quantum dot-phthalocyanine conjugates. J. Am. Chem. Soc.128(43),13974–13975 (2006).
    • 52  Shi LX, Hernandez B, Selke M: Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J. Am. Chem. Soc.128(19),6278–6279 (2006).
    • 53  Hsieh JM, Ho ML, Wu PW, Chou PT, Tsai TT, Chi Y: Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bifunctionality toward imaging and photosensitization. Chem. Comm. (6),615–617 (2006).
    • 54  Tsay JM, Trzoss M, Shi LX et al.: Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J. Am. Chem. Soc.129(21),6865–6871 (2007).
    • 55  Ma J, Chen JY, Idowu M, Nyokong T: Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots – sulfonated aluminum phthalocyanines. J. Phys. Chem. B112(15),4465–4469 (2008).
    • 56  Bakalova R, Ohba H, Zhelev Z et al.: Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett.4(9),1567–1573 (2004).
    • 57  Medintz IL, Mattoussi H, Clapp AR: Potential clinical applications of quantum dots. Int. J. Nanomed.3(2),151–167 (2008).
    • 58  Jaiswal JK, Mattoussi H, Mauro JM, Simon SM: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21(1),47–51 (2003).
    • 59  Derfus AM, Chan WCW, Bhatia SN: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett.4(1),11–18 (2004).
    • 60  Collins HA, Khurana M, Moriyama EH et al.: Blood-vessel closure using photosensitizers engineered for two-photon excitation. Nat. Photonics2(7),420–424 (2008).