We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

In vitro studies on the pleotropic antidiabetic effects of zinc oxide nanoparticles

    Swati C Asani

    Department of Nanobioscience, Agharkar Research Institute, G G Agarkar Road, Pune 411004, Maharashtra, India

    ,
    Rinku D Umrani

    **Author for correspondence:

    E-mail Address: rinkuumrani@aripune.org

    Department of Nanobioscience, Agharkar Research Institute, G G Agarkar Road, Pune 411004, Maharashtra, India

    &
    Kishore M Paknikar

    *Author for correspondence:

    E-mail Address: kpaknikar@gmail.com

    Department of Nanobioscience, Agharkar Research Institute, G G Agarkar Road, Pune 411004, Maharashtra, India

    Published Online:https://doi.org/10.2217/nnm-2016-0119

    Aim: Our earlier study demonstrated antidiabetic activity of zinc oxide nanoparticles (ZON) in diabetic rats. The present study was performed to elucidate its mechanism of antidiabetic action. Methods: Protein tyrosine phosphatase 1B, protein kinase B and hormone sensitive lipase phosphorylation; glucose transporter 4 translocation and glucose uptake; glucose 6 phosphatase, phosphoenol pyruvate carboxykinase and glucokinase expression; and pancreatic beta cell proliferation were evaluated after ZON treatment to cells. Result: ZON treatment resulted in PKB activation, protein tyrosine phosphatase 1B inactivation, increased glucose transporter 4 translocation and enhanced glucose uptake, decreased glucose 6 phosphatase and phosphoenol pyruvate carboxykinase expression, hormone sensitive lipase inactivation and pancreatic beta cell proliferation. Conclusion: To the best of our knowledge, we report for the first time, pleiotropic antidiabetic effects of ZON viz. improved insulin signaling, enhanced glucose uptake, decreased hepatic glucose output, decreased lipolysis and enhanced pancreatic beta cell mass.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 WHO. Fact file,10 facts about diabetes. www.who.int/features/factfiles/diabetes/facts/en/.
    • 2 Pandey A, Tripathi P, Pandey R, Srivatava R, Goswami S. Alternative therapies useful in the management of diabetes: a systematic review. J. Pharm. Bioallied Sci. 3, 504–512 (2011).
    • 3 Prabhakar PK, Kumar A, Doble M. Combination therapy: a new strategy to manage diabetes and its complications. Phytomedicine 21, 123–130 (2014).
    • 4 Nakai M, Sekiguchi F, Obata M et al. Synthesis and insulin-mimetic activities of metal complexes with 3-hydroxypyridine-2-carboxylic acid. J. Inorg. Biochem. 99(6), 1275–1282 (2005).
    • 5 Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz LO. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch. Biochem. Biophys. 463(2), 175–182 (2007).
    • 6 Tripathi IP, Kumar MM, Arti K et al. Synthesis, characterization of some antidiabetic copper complexes with ethylenediamine. Res. J. Chem. Sci. 3(12), 54–59 (2013).
    • 7 Thompson KH, Orvig C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg. Biochem. 100(12), 1925–1935 (2006).
    • 8 Sakurai H, Yoshikawa Y, Yasui H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem. Soc. Rev. 37(11), 2383–2392 (2008).
    • 9 Vardatsikos G, Mehdi MZ, Srivastava AK. Bis (maltolato)-oxovanadium (IV)-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes toits glucoregulatory responses. Int. J. Mol. Med. 24(3), 303–309 (2009).
    • 10 Fedorova EV, Buryakina AV, Zakharov AV, Filimonov DA, Lagunin AA, Poroikov VV. Design, synthesis and pharmacological evaluation of novel vanadium- containing complexes as antidiabetic agents. PLoS ONE 9(7), e100386 (2014).
    • 11 Anderson RA. Chromium, glucose intolerance and diabetes. J. Am. Coll. Nutr. 17(6), 548–555 (1998).
    • 12 Martin J, Wang ZQ, Zhang XH et al. Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with Type 2 diabetes. Diabetes Care 29(8), 1826–1832 (2006).
    • 13 Wang ZQ, Cefalu WT. Current concepts about chromium supplementation in Type 2 diabetes and insulin resistance. Curr. Diab. Rep. 10(2), 145–151 (2010).
    • 14 El-Megharbel SM. Synthesis, characterization and antidiabetic activity of chromium (III) metformin complex. J. Microb. Biochem. Technol. 7, 65–75 (2015).
    • 15 Rodríguez-Morán M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in Type 2 diabetic subjects a randomized double-blind controlled trial. Diabetes Care 26(4), 1147–1152 (2003).
    • 16 Yokota K, Kato M, Lister F et al. Clinical efficacy of magnesium supplementation in patients with Type 2 diabetes. J. Am. Coll. Nutr. 23(5), S506–S509 (2004).
    • 17 Tanko Y, Alhassan M, Mohammed KA et al. Modulatory role of magnesium and copper sulphates on serum lipid profile and serum liver enzymes in fructose-induced diabetic wistar rats. J. Appl. Pharm. Sci. 3(8), S64–S67 (2013).
    • 18 Ayaz M, Can B, Ozdemir S, Turan B. Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol. Trace Elem. Res. 89(3), 215–226 (2002).
    • 19 Ayaz M, Ozdemir S, Ugur M, Vassort G, Turan B. Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch. Biochem. Biophys. 426(1), 83–90 (2004).
    • 20 Al-Quraishy S, Dkhil MA, Moneim AEA. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int. J. Nanomed. 10, 6741–6756 (2015).
    • 21 Vasudevan H, McNeill JH. Chronic cobalt treatment decreases hyperglycemia in streptozotocin-diabetic rats. Biometals 20(2), 129–134 (2007).
    • 22 Yang L, Crans DC, Miller SM et al. Cobalt (II) and cobalt (III) dipicolinate complexes: solid state, solution, and in vivo insulin-like properties. Inorg. Chem. 41(19), 4859–4871 (2002).
    • 23 Talba T, Shui XW, Cheng Q, Tian X. Antidiabetic effect of glucosaminic acid-cobalt (II) chelate in streptozotocin-induced diabetes in mice. Diabetes Metab. Syndr. Obes. 4, 137–140 (2011).
    • 24 Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NF B activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med. 226(2), 103–111 (2001).
    • 25 Ukperoro JU, Offiah N, Idris T, Awogoke D. Antioxidant effect of zinc, selenium and their combination on the liver and kidney of alloxan-induced diabetes in rats. Med. J. Nutrition. Metab. 3(1), 25–30 (2010).
    • 26 Yoshikawa Y, Yasui H. Zinc complexes developed as metallopharmaceutics for treating diabetes mellitus based on the bio-medicinal inorganic chemistry. Curr. Top. Med. Chem. 12, 210–218 (2012).
    • 27 Pandey G, Jain GC, Mathur N. Therapeutic potential of metals in managing diabetes mellitus: a review. J. Mol. Pathophysiol. 1(1), 63–76 (2012).
    • 28 Chausmer AB. Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17(2), 109–115 (1998).
    • 29 Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv. Nutr. 2, 101–111 (2011).
    • 30 Huang L. Zinc and its transporters, pancreatic b-cells, and insulin metabolism. Vitam. Horm. 95, 365–90 (2014).
    • 31 Meyer JA, Spence DM. A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 1(1), 32–41 (2009).
    • 32 Liu Y, Batchuluun B, Ho L et al. Characterization of zinc influx transporters (ZIPs) in pancreatic β cells, roles in regulating cytosolic zinc homeostasis and insulin secretion. J. Biol. Chem. 290(30), 18757–18769 (2015).
    • 33 Mitchell RK, Hu M, Chabosseau PL et al. Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance. Mol. Endocrinol. 30(1), 77–91 (2015).
    • 34 Smidt K, Jessen N, Petersen AB et al. SLC30A3 responds to glucose-and zinc variations in ß-cells and Is critical for insulin production and in vivo glucose-metabolism during ß-cell stress. PLoS ONE 4(5), e5684 (2009).
    • 35 Chimienti F, Devergnas S, Pattou F et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119(20), 4199–4206 (2006).
    • 36 Kojima Y, Yoshikawa Y, Ueda E et al. Insulinomimetic zinc (II) complexes with natural products: in vitro evaluation and blood glucose lowering effect in KK-Ay mice with Type 2 diabetes mellitus. Chem. Pharm. Bull. 51(8), 1006–1008 (2003).
    • 37 Sakurai H, Adachi Y. The pharmacology of the insulinomimetic effect of zinc complexes. Biometals 18(4), 319–323 (2005).
    • 38 Ueda E, Yoshikawa Y, Sakurai H, Kojima Y, Kajiwara NM. In vitro alpha-glucosidase inhibitory effect of Zn (II) complex with 6-methyl-2-picolinmethylamide. Chem. Pharm. Bull. 53(4), 451–452 (2005).
    • 39 Sakurai H, Katoh A, Yoshikawa Y. Chemistry and biochemistry of insulin-mimetic vanadium and zinc complexes. Trial for treatment of diabetes mellitus. Bull. Chem. Soc. Jpn 79(11), 1645–1664 (2006).
    • 40 Yoshikawa Y, Adachi Y, Sakurai H. A new type of orally active anti-diabetic Zn (II)-dithiocarbamate complex. Life Sci. 80(8), 759–766 (2007).
    • 41 Nakayama A, Hiromura M, Adachi Y, Sakurai H. Molecular mechanism of antidiabetic zinc–allixin complexes: regulations of glucose utilization and lipid metabolism. J. Biol. Inorg. Chem. 13(5), 675–684 (2008). •• One of the earliest detailed report on effects of zinc on lipid metabolism.
    • 42 Capdor J, Foster M, Petocz P, Samman S. Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J. Trace Elem. Med. Biol. 27, 137–142 (2013).
    • 43 Marchesini G, Bugianesi E, Ronchi M, Flamia R, Thomaseth K, Pacini G. Zinc supplementation improves glucose disposal in patients with cirrhosis. Metabolism 47(7), 792–798 (1998).
    • 44 Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 15, 2015–2023 (2014).
    • 45 Afkhami-Ardekani M, Karimi M, Mohammadi SM, Nourani F. Effect of zinc sulfate supplementation on lipid and glucose in Type 2 diabetic patients. Pak. J. Nutr. 7(4), 550–553 (2008).
    • 46 Hashemipour M, Kelishadi R, Shapouri J et al. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens). 8(4), 279–285 (2009).
    • 47 Gunasekara P, Hettiarachchi M, Liyanage C, Lekamwasam S. Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes. Diabetes Metab. Syndr. Obes. 4, 53–60 (2011).
    • 48 Karamali M, Heidarzadeh Z, Seifati SM et al. Zinc supplementation and the effects on metabolic status in gestational diabetes: a randomized, double-blind, placebo-controlled trial. J. Diabetes Complicat. 29(8), 1314–1319 (2015).
    • 49 Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Types 1 and 2 diabetic rats. Nanomedicine 9(1), 89–104 (2014).
    • 50 Bianchi GP, Marchesini G, Brizi M et al. 2000. Nutritional effects of oral zinc supplementation in cirrhosis. Nutr. Res. 20(8), 1079–1089 (2000).
    • 51 Mocchegiani E, Malavolta M, Giacconi R, Costarelli L. Dietary Intake and impact of zinc supplementation on the immune functions in elderly: nutrigenomic approach. In: Immunology of Aging. Massoud A, Rezaei N (Eds). Springer Verlag, Berlin-Heidelberg, Germany, 295–308 (2014).
    • 52 Mocchegiani E, Romeo J, Malavolta M et al. Zinc: dietary intake and impact of supplementation on immune function in elderly. Age 35(3), 839–860 (2013).
    • 53 Obanda DN, Cefalu WT. Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells. J. Nutr. Biochem. 24(8), 1529–1537 (2013).
    • 54 Bakke J, Haj FG. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin. Cell. Dev. Biol. 37, 58–65 (2015).
    • 55 Wilson M, Hogstrand C, Maret W. Picomolar concentrations of free zinc(II) ions regulate receptor protein tyrosine phosphatase beta activity. J. Biol. Chem. 287(12), 9322–9326 (2012).
    • 56 Bellomo E, Massarotti A, Hogstrand C, Maret W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 6, 1229–1239 (2014). •• Reports PTP1B regulation by zinc ions.
    • 57 Naito Y, Yoshikawa Y, Yasui H. Cellular mechanism of zinc-hinokitiol complexes in diabetes mellitus. Bull. Chem. Soc. Jpn. 84(3), 298–305 (2011). •• A report on effects of zinc complex on PKB phosphorylation, GLUT4 translocation and glucose uptake.
    • 58 Olson AL. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Mol Bio. 2012, 856987 (2012).
    • 59 Lai YC, Liu Y, Jacobs R, Ridera MH. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle. Biochem. J. 447, 137–147 (2012).
    • 60 Huang S, Czech MP. The GLUT4 glucose transporter. Cell. Metab. 5(4), 237–252 (2007).
    • 61 Morgan BJ, Chai SY, Albiston AL. GLUT4 associated proteins as therapeutic targets for diabetes. Recent. Pat. Endocr. Metab. Immune Drug. Discov. 5, 25–32 (2011).
    • 62 Kim DH, Perdomo G, Zhang T. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 60, 2763–2774 (2013).
    • 63 Guan HP, Chen G. Factors affecting insulin regulated hepatic gene expression. In: Progress in Molecular Biology and Translational Science: Glucose Homeostatis and the Pathogenesis of Diabetes Mellitus (Volume 121). Ya-Xiong T (Ed.). Academic Press, Cambridge, USA, 165–215 (2014). • Describes in detail the insulin's regulation of gluconeogenesis.
    • 64 Rutman JZ, Rutman RJ, George P. The influence of metal ions on the denovo synthesis of glucose by rat kidney cortex slices. Life Sci. 3(6), 617–624 (1964). • Primary evidence for role of metals ions in gluconeogenesis.
    • 65 Cameron AR, Wallace K, Logie L et al. The anti-neurodegenerative agent clioquinol regulates the transcription factor FOXO1a. Biochem. J. 443, 57–64 (2012).
    • 66 Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes. Rev. 16(9), 715–57 (2015).
    • 67 Moon MH, Jeong JK, Lee YJ et al. 18β-glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis. Biochem. Biophys. Res. Commun. 420, 805–810 (2012).
    • 68 Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 14(121), 1–9 (2015).
    • 69 Zhang HB, Wang MS, Wang ZS et al. Supplementation dietary zinc levels on growth performance, carcass traits, and intramuscular fat deposition in weaned piglets. Biol. Trace Elem. Res. 161(1), 69–77 (2014).
    • 70 Maxel T, Smidt K, Larsen A et al. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes. 2(1), 1–11 (2015).
    • 71 Meier JJ, Bonadonna RC. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of Type 2 diabetes. Diabetes Care 36(2), 113–119 (2013).
    • 72 Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17, 852–870 (2012).
    • 73 Sharma V, Singh P, Pandey AK, Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res. 745, 84–91 (2012).
    • 74 Baek M, Kim MK, Cho HJ et al. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J. Phys. 304, 012044 (2011). •• Provides evidence on effects of size and charge on cytotoxicity of zinc oxide nanoparticles.
    • 75 Luo M, Shen C, Feltis BN et al. Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale 6, 5791–5798 (2014).
    • 76 Muthuraman P, Ramkumar K, Kim DH. Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl. Biochem. Biotechnol. 174, 2851–2863 (2014). •• Elucidates the cytotoxic and safe concentrations of zinc oxide nanoparticles.
    • 77 Taccola L, Raffa V, Riggio C et al. Zinc oxide nanoparticles as selective killers of proliferating cells. Int. J. Nanomed. 6, 1129–1140 (2011).
    • 78 Das D, Nath BC, Phukon P, Dolui SK. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf. B Biointerfaces 111, 556–560 (2013).
    • 79 Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth TV, Kim KJ, Shin HM. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B Biol. 146, 10–17 (2015).