We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Emerging therapies in Friedreich's ataxia

    Tanya V Aranca

    University of South Florida Ataxia Research Center, Department of Neurology, FL, USA

    ,
    Tracy M Jones

    University of South Florida Ataxia Research Center, Department of Neurology, FL, USA

    ,
    Jessica D Shaw

    University of South Florida Ataxia Research Center, Department of Neurology, FL, USA

    ,
    Joseph S Staffetti

    University of South Florida Ataxia Research Center, Department of Neurology, FL, USA

    ,
    Tetsuo Ashizawa

    McKnight Brain Institute, University of Florida Department of Neurology, FL, USA

    ,
    Sheng-Han Kuo

    Department of Neurology, Columbia University, NY, USA

    ,
    Brent L Fogel

    Department of Neurology, Neurogenetics Program, David Geffen School of Medicine, University of California, CA, USA

    ,
    George R Wilmot

    Department of Neurology, Emory University, GA, USA

    ,
    Susan L Perlman

    Ataxia and Huntington Disease Center of Excellence, University of California, CA, US

    ,
    Chiadi U Onyike

    Department of Psychiatry and Behavioral Sciences, Johns Hopkins University school of Medicine MD, USA

    ,
    Sarah H Ying

    Department of Neurology, Johns Hopkins University School of Medicine, MD, USA

    Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, MD, USA

    Department of Ophthalmology, Johns Hopkins University School of Medicine, MD, USA

    &
    Theresa A Zesiewicz

    *Author for correspondence:

    E-mail Address: tzesiewi@health.usf.edu

    University of South Florida Ataxia Research Center, Department of Neurology, FL, USA

    James A. Haley Veterans’ Hospital, FL, USA

    Published Online:https://doi.org/10.2217/nmt.15.73

    Friedreich's ataxia (FRDA) is an inherited, progressive neurodegenerative disease that typically affects teenagers and young adults. Therapeutic strategies and disease insight have expanded rapidly over recent years, leading to hope for the FRDA population. There is currently no US FDA-approved treatment for FRDA, but advances in research of its pathogenesis have led to clinical trials of potential treatments. This article reviews emerging therapies and discusses future perspectives, including the need for more precise measures for detecting changes in neurologic symptoms as well as a disease-modifying agent.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Klockgether T. Parkinsonism & related disorders. Ataxias. Pakinsonism Relat. Disord. 13, S391–S394 (2007).
    • 2 Labuda M, Labuda D, Miranda C et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 54, 2322–2324 (2000).
    • 3 Filla A, Michele G, Cavalcanti F et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am. J. Hum. Genet. 59, 554–560 (1996).
    • 4 Manto M, Marmolino D. Cerebellar ataxias. Curr. Opin. Neurol. 22, 419–429 (2009).
    • 5 Dürr A, Cossee M, Agid Y et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).
    • 6 Saute JAM, Donis KC, Serrano-Munuera C et al. Ataxia rating scales – psychometric profiles, natural history and their application in clinical trials. Cerebellum 11, 488–504 (2012). •• This is a comprehensive review of ataxia rating scales where the scales are systematically reviewed and critiqued.
    • 7 Reetz K, Dogan I, Costa AS et al. Bilogical and clinical characteristics of the European Friedreich's ataxia consortium for translational studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 14(2), 174–182 (2015).
    • 8 Cano SJ, Riazi A, Schapira AH et al. Friedreich's ataxia impact scale: a new measure striving to provide the flexibility required by today's studies. Mov. Disord. 24(7), 984–992 (2009).
    • 9 Trouillas P, Takayanagi T, Hallett M et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J. Neurol. Sci. 145, 205–211 (1997).
    • 10 Bürk K, Schulz S, Schulz J. Monitoring progression in Friedreich ataxia (FRDA): the use of clinical scales. J. Neurochem. 126(Suppl. 1), 118–124 (2013).
    • 11 Subramony SH, May W, Lynch D et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 64, 1261–1262 (2005).
    • 12 Gillis JC, Benefield P, McTavish D. Idebenone: a review of its pharmacodynamics and pharmacokinetic properties, and therapeutic use in age-related cognitive disorders. Drugs Aging 5, 133–152 (1994).
    • 13 Lagedrost S, Sutton M, Cohen M et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month Phase III study (IONIA). Am. Heart J. 161, 639–645 (2011).
    • 14 Lynch DR, Perlman SL, Meier T. A phase 3 double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch. Neurol. 67(8), 941–947 (2010).
    • 15 Hausse AO, Aggoun Y, Bonnet D et al. Idebenone and reduced cardiac hypertrophy in Friedreich's ataxia. Heart. 87, 346–349 (2002).
    • 16 Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di Donato S. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60(10), 1676–1679 (2003).
    • 17 Pineda M, Arpa J, Montero R et al. Idebenone treatment in pediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur. J. Paediatr. Neurol. 12, 470–475 (2008).
    • 18 DiProspero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 6, 878–886 (2007).
    • 19 Lodi R, Hart PE, Rajagopalan B et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with ataxia. Ann. Neurol. 49(5), 590–596 (2001).
    • 20 Hart P, Lodi R, Rajagopalan B et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch. Neurol. 62(4), 621–626 (2005).
    • 21 Cooper JM, Kolipara LV, Hart PE, Bradley JL, Schapira AH. Coenzyme Q10 and vitamin E deficiency in Friedreich's ataxia: predictor of efficiency of vitamin E and coenzyme Q10 therapy. Eur. J. Neurol. 15(12), 1371–1379 (2008).
    • 22 Lynch DR, Willi SM, Wilson RB et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov. Disord. 27(8), 1026–1033 (2012).
    • 23 Li L, Voullaire L, Sandi C et al. Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of Friedreich ataxia. PLoS ONE 8(2), e55910 (2013).
    • 24 Yiu EM, Tai G, Peverill RE et al. An open-label trial in Friedreich ataxia suggest clinical benefit with high-dose resveratrol, without effect on frataxin levels. J. Neurol. 262(5), 1344–1353 (2015).
    • 25 Schöls L, Zange J, Abele M et al. L-Carnitine and creatine in Friedreich's ataxia, A randomized, placebo-controlled crossover trial. J. Neural. Transm. 112, 789–796 (2005).
    • 26 Villa RF, Turpeenoja L, Benzi G, Giuffrida Stella AM. Action of actylcarnitine on age-dependent modifications of mitochondrial membrane proteins from rat cerebellum. Neurochem. Res. 13(10), 909–916 (1988).
    • 27 Sorbi S, Forleo P, Fani C, Piacentini S. Double-blind, crossover, placebo-controlled clinical trial with L-acetylcarnitine in patients with degenerative cerebellar ataxia. Clin. Neuropharmacol. 23(2), 114–118 (2000).
    • 28 Pourcher E, Barbeau A. Field testing of an ataxia scoring and staging system. Can. J. Neurol. Sci. 7, 339–344 (1980).
    • 29 Angel RW. The rebound phenomenon of Gordon Holmes. Arch. Neurol. 34(4), 250 (1977).
    • 30 Albeti R, Uzun E, Renganathan I et al. Targeting lipid peroxidation and mitochondrial I mbalance in Friedreich's ataxia. Pharmacol. Res. 99, 344–350 (2015).
    • 31 Hill S, Lamberson CR, Xu L, To R et al. Small amounts of isotopereinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic. Biol. Med. 53(4), 893–906 (2012).
    • 32 Lamberson CR, Xu L, Muchalski H et al. Unusual kinetic isotope effects of deuterium reinforced polyunsaturated clinical features fatty acids in tocopherol-mediated free radical chain oxidations. J. Am. Chem. Soc. 136(3), 838–41 (2014).
    • 33 Pandolfo M, Hausmann L. Deferiprone for the treatment of Friedreich's ataxia. J. Neurochem. 126(1), 142–146 (2013).
    • 34 Pandolfo M, Arpa J, Delatycki MD et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann. Neurol. 76(4), 509–521 (2014).
    • 35 Velasco-Sanchez D, Aracil A, Montero R et al. Combined therapy with idebenone and deferiprone in patients with Friedreich's ataxia. Cerebellum 10(1), 1–8 (2011).
    • 36 Pandolfo M, Igoillo-Esteve M, Hu A et al. Study of beta cells and neurons indicate incretin analogs as potential therapeutics for Friedreich's ataxia. Neurology 84(14), Suppl. S32.005 (2015).
    • 37 Igoillo-Esteve M, Gurgul-Convey E, Hu A et al. Unveiling a common mechanism of apoptosis in β-cells and neurons in Friedreich's ataxia. Hum. Mol. Genet. 24(8), 2274–2286 (2015).
    • 38 Cnop M, Igoillo-Esteve M, Rai M et al. Central role and mechanism of β-cell dysfunction and death in Friedreich ataxia-associated diabetes. Ann. Neurol. 72(6), 971–982 (2012).
    • 39 Marmolino D, Fabio Pinelli M et al. PPAR-γ agonist azelaoyl PAF Increases frataxin protein and mRNA expression. New implications for the Friedreich ataxia therapy. Cerebellum 8, 98–103 (2009).
    • 40 Paupe V, Dassa EP, Goncalves S et al. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS ONE 4, 4253–4264 (2009).
    • 41 Sturm B, Stupphann D, KAUN C et al. Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur. J. Clin. Invest. 35(11), 711–717 (2005).
    • 42 Boesch S, Strum B, Hering S, Goldenberg H, Poeve W, Scheiber-Mojdehkar B. Friedreich ataxia: clinical pilot trial with recombinant human erythropoietin. Ann. Neurol. 62(5), 521–524 (2007).
    • 43 Boesch S, Nachnauer W, Mariotti C et al. Safety and tolerability of carbamylated erythropoietin in Friedreich ataxia. Mov. Disord. 29(7), 935–939 (2014).
    • 44 Mariotti C, Francellu R, Caldarazzo S et al. Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov. Disord. 3(27), 446–449 (2012).
    • 45 Rufini A, Fortuni S, Arcuri G et al. Preventing the ubiquitin-proteasome-dependent degradation of frataxin, the protein defective in Friedreich's ataxia. Hum. Mol. Genet. 20(7), 1253–1261 (2011).
    • 46 Sanz-Gallego I, Torres-Aleman I, Arpa J. IGF-1 in Friedreich's ataxia – proof-of-concept trial. Cerebellum Ataxias. 1(10), doi:10.1186/2053-8871-1-10 (2014).
    • 47 Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich ataxia. J. Neurochem. 126(10), 147–154 (2013).
    • 48 Silva AM, Brown JM, Buckle VJ, Wade-Martins R, Lufino MM. Expended GAA repeats impair FXN gene expression and reposition the FXN locus to the nuclear lamina in single cells. Hum. Mol. Genet. 24(12), 3457–3471 (2015).
    • 49 Libri V, Yandim C, Athanasopoulos S et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich ataxia: an exploratory, open-label, dose escalation study. Lancet 384, 504–513 (2014).
    • 50 Herman D, Jenssen K, Burnett R et al. Histine deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat. Chem. Biol. 2(10), 551–558 (2006).
    • 51 Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich ataxia. J. Neurochem. 126(1), 147–154 (2013). •• An in-depth review of HDAC inhibitors, their effectiveness and the prospect of future clinical studies.
    • 52 Rai M, Soragni E, Jenssen K et al. HDAC inhibitors correct frataxin deficiency in a Friedreich mouse model. PLoS ONE 3(4), e1958 (2008).
    • 53 Schmitz-Hubsch T, Giunti P, Stephenson DA et al. SCA Functional Index: a useful compound performance measure for spinocerebellar ataxia. Neurology 71, 486–492 (2008).
    • 54 Tomassini B, Arcuri G, Fortuni S et al. Interferon gamma upregulates frataxin and corrects the functional deficits in a Friedreich ataxia model. Hum. Mol. Genet. 21, 2855–2861 (2012). • Provides detailed information on Interferon gamma and its potential as an effective treatment of Friedreich's ataxia.
    • 55 Seyer L, Greeley N, Foerster D et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol. Scand. 132(1), 7–15 (2015).
    • 56 Arpa J, Sanz-Gallego I, Rodriguez-de-Rivera FJ et al. Triple therapy with deferiprone, idebenone and riboflavin in Friedreich's ataxia – open-label trial. Acta. Neurol. Scand. 129, 32–40 (2014).
    • 57 Arpa J, Sanz-Gallego I, Rodriguez-de-Rivera FJ et al. Triple therapy with darbepoetin alfa, idebenone, and riboflavin in Friedreich's ataxia: an open-label trial. Cerebellum 12, 713–720 (2013).
    • 58 Coelho F, Birks J. Physostigmine for Alzheimer's disease. Cochrane Databse Syst. Rev. 2, CD001499 (2001).
    • 59 Wessel k, Langenberger K, Nitschke M et al. Double-blind crossover study with physostigimine in patients with degenerative cerebellar disease. Arch. Neurol. 54(4), 397–400 (1997).
    • 60 Rodriguez-Budelli M, Kark RAP, Blass JP, Spence MA. Action of physostigmine on inherited ataxia. Adv. Neurol. 21, 195–204 (1978).
    • 61 Kark RAP, Budelli MMR, Wachsner R. Double-blind, triple-crossover trial of low doses of oral physostigmine in inherited ataxias. Neurology 31, 288–292 (1981).
    • 62 Ristori G, Romano S, Visconti A et al. Riluzole in cerebellar ataxia. Neurology 74, 839–845 (2010).
    • 63 Romano S, Coarelli G, Marcotulli C et al. Riluzole in patients with hereditary cerebellar ataxia: a randomized, double-blind, placebo-controlled trial. Lancet Neurol. 14, 985–991 (2015).
    • 64 Alviña K, Khodakhah K. Selective regulation of spontaneous activity of neurons if the deep cerebellar nuclei by N-type calcium channels in juvenile rats. J. Physiol. 10, 2523–2538 (2008).
    • 65 Feng S, Jaeger D. The role of SK calcium-dependent potassium currents on regulating the activity of deep cerebellar nucleus neurons: a dynamic clamp study. Cerebellum 7(4), 542–543 (2008).
    • 66 Cao YJ, Dreixler JC, Couey JJ, Houamed KM. Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur. J. Pharmacol. 449, 47–54 (2002).
    • 67 Zesiewicz T, Greenstein PE, Sullivan KL et al. A randomized trail varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 78(8), 545–550 (2012).
    • 68 Clinical Trials Database. Identifier: NCT00803868. https://clinicaltrials.gov/ct2/show/NCT00803868.
    • 69 Peterson PL, Saad J, Nigro MA. The treatment of Friedeich's ataxia with amantadine. Neurology 38, 1478–1480 (1988).
    • 70 Filla A, De Michele G, Orefice G et al. A double-blind cross-over trial of amantadine hydrochloride in Friedreich's ataxia. Can. J. Neurol. Sci. 20, 52–55 (1993).
    • 71 Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73, 1823–1830 (2009).
    • 72 Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Long-term effects of coordinative training in degenerative cerebellar disease. Movm. Disord. 25, 2239–2246 (2010).
    • 73 Synofzik M, Ilg W. Motor training in degenerative spinocerebellar disease: Ataxia-specific improvements by intensive physiotherapy and exergames. Biomed. Res. Int. doi:10.1155/2014/583507 (2014).
    • 74 Ilg W, Schatton C, Schicks j et al. Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology 79(20), 2056–2060 (2012).
    • 75 Synofzik M, Schatton C, Giese M et al. Videogame-based coordinative training can improve advanced, multisystemic early-onset ataxia. J. Neurol. 260(10), 2656–2658 (2013).
    • 76 Perdomini M, Belbellaa B, Monassier L et al. Prevention and reversal of severe mitochondiral cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nat. Med. 20, 542–547 (2014). •• Provides information on promising research in gene therapy for treating cardiomyopathy in the Friedreich's ataxia population.
    • 77 Li Y, Polak U, Bhalla AD et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich's ataxia. Mol. Ther. 23(6), 1055–1065 (2015).
    • 78 Groh M, Lufino MMP, Wade-Martins R et al. R-loops associated with triplet repeat expansion promote gene silencing in Friedreich ataxia and fragile X syndrome. PLOS Genetics 10(5), 1–13 (2014).
    • 79 Yoon H, Knight SAB, Pandey A et al. Frataxin-bypassin Isu1: characterization of the bypass activity in cells and mitochondria. Biochem. J. 459(1), 71–81 (2014).
    • 80 Buyse G, Mertens L, Di Salvo G et al. Idebenone treatment in Friedreich ataxia: neurological, cardiac and biochemical monitoring. Neurology 60(10), 1679–1681 (2003).
    • 81 Rustin P, von Kliest-Retzow JC, Chantrel-Groussard K et al. Effect of idebenone on cardiomyopathy in Friedreich ataxia: a preliminary study. Lancet 354(9177), 477–479 (1999).
    • 82 Boddaert N, Le Quan Sang KH, Rötig A et al. Antioxidant treatment of patients with Friedreich ataxia: four year follow up. Arch. Neurol. 62(4), 621–626 (2005).
    • 83 The Friedreich's Ataxia Treatment Pipeline is a visual tool for communicating the progress of research and development on lead therapeutic candidates. www.curefa.org/pipeline.