We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy?

    Christopher A Shaw

    *Author for correspondence:

    E-mail Address: cashawlab@gmail.com

    Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada

    ,
    Dan Li

    Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada

    &
    Lucija Tomljenovic

    Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada

    Published Online:https://doi.org/10.2217/imt.14.81

    In spite of a common view that aluminum (Al) salts are inert and therefore harmless as vaccine adjuvants or in immunotherapy, the reality is quite different. In the following article we briefly review the literature on Al neurotoxicity and the use of Al salts as vaccine adjuvants and consider not only direct toxic actions on the nervous system, but also the potential impact for triggering autoimmunity. Autoimmune and inflammatory responses affecting the CNS appear to underlie some forms of neurological disease, including developmental disorders. Al has been demonstrated to impact the CNS at every level, including by changing gene expression. These outcomes should raise concerns about the increasing use of Al salts as vaccine adjuvants and for the application as more general immune stimulants.

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1 Baylor NW, Egan W, Richman P. Aluminum salts in vaccines – US perspective. Vaccine 20(Suppl. 3), S18–S23 (2002).
    • 2 Glenny AT, Pope CG, Waddington H, Wallace U. XXIII – the antigenic value of toxoid precipitated by potassium alum. J. Pathol Bacteriol. 29, 38–39 (1926).
    • 3 Exley C. Aluminium adjuvants and adverse events in sub-cutaneous allergy immunotherapy. Allergy Asthma Clin. Immunol. 10(1), 4 (2014).
    • 4 Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J. Inorg. Biochem. 103(11), 1555–1562 (2009).
    • 5 Li X, Zheng H, Zhang Z et al. Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomedicine 5(4), 473–479 (2009).
    • 6 Passeri E, Villa C, Couette M et al. Long-term follow-up of cognitive dysfunction in patients with aluminum hydroxide-induced macrophagic myofasciitis (MMF). J. Inorg. Biochem. 105(11), 1457–1463 (2011).•• Demonstration of a unique cognitive dysfunction syndrome in patients with post-vaccinal macrophagic myofasciitis, which provides further evidence of the multisystemic nature of macrophagic myofasciitis (MMF).
    • 7 Couette M, Boisse MF, Maison P et al. Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J. Inorg. Biochem. 103(11), 1571–1578 (2009).
    • 8 Gherardi R, Authier F. Macrophagic myofasciitis: characterization and pathophysiology. Lupus 21(2), 184–189 (2012).
    • 9 Zafrir Y, Agmon-Levin N, Paz Z, Shilton T, Shoenfeld Y. Autoimmunity following Hepatitis B vaccine as part of the spectrum of ‘Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants’ (ASIA): analysis of 93 cases. Lupus 21(2), 146–152 (2012).
    • 10 Shaw AC, Li Y, Tomljenovic L. Administration of aluminium in vaccine-relevant amounts in neonatal mice is associated with long-term adverse neurological outcomes. J. Inorg. Biochem. 128, 237–244 (2013).
    • 11 Khan Z, Combadiere C, Authier FJ et al. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Med. 11, 99 (2013).•• Demonstration of neurodelivery and long-term accumulation of peripherally injected vaccine-derived aluminum compounds in mice.
    • 12 Offit PA, Jew RK. Addressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics 112(6 Pt 1), 1394–1397 (2003).
    • 13 Eldred BE, Dean AJ, McGuire TM, Nash AL. Vaccine components and constituents: responding to consumer concerns. Med. J. Aust. 184(4), 170–175 (2006).
    • 14 Priest ND. Satellite symposium on Alzheimer's disease and dietary aluminium. Proc. Nutr. Soc. 52, 231–240 (1993).
    • 15 Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for aluminum. US Department of Health and Human services, Atlanta, GA, USA (2008). www.atsdr.cdc.gov/toxprofiles/tp22.pdf
    • 16 Exley C. Human exposure to aluminium. Environ. Sci. Process Impacts 15(10), 1807–1816 (2013).
    • 17 Tomljenovic L. Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link? J. Alzheimers Dis. 23(4), 567–598 (2011).
    • 18 Walton JR. Evidence that Ingested Aluminum additives contained in processed foods and alum-treated drinking water are a major risk factor for Alzheimer's Disease. Curr. Inorg. Chem. 2(1), 19–39 (2012).
    • 19 Exley C, House E. Aluminium in the human brain. Monatsh. Chem. 142, 357–363 (2011).
    • 20 Fewtrell MS, Edmonds CJ, Isaacs E, Bishop NJ, Lucas A. Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence. Proc. Nutr. Soc. 70(3), 299–304 (2011).
    • 21 Power G, Loh JSC, Vernon C. Organic compounds in the processing of lateritic bauxites to alumina Part 2: effects of organics in the Bayer process. Hydrometallurgy 127–128, 125–149 (2012).
    • 22 Dapson RW. The history, chemistry and modes of action of carmine and related dyes. Biotech. Histochem. 82(4), 173–187 (2007).
    • 23 Nicholson S, Exley C. Aluminum: a potential pro-oxidant in sunscreens/sunblocks? Free Radic. Biol. Med. 43(8), 1216–1217 (2007).
    • 24 Ai-Ashmawy MA. Prevalence and public health significance of aluminum residues in milk and some dairy products. J. Food Sci. 76(3), T73–T76 (2011).
    • 25 Bishop NJ, Morley R, Day JP, Lucas A. Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. N. Engl. J. Med. 336(22), 1557–1561 (1997).
    • 26 Fewtrell MS, Bishop NJ, Edmonds CJ, Isaacs EB, Lucas A. Aluminum exposure from parenteral nutrition in preterm infants: bone health at 15-year follow-up. Pediatrics 124(5), 1372–1379 (2009).
    • 27 Gies WJ. Some objections to the use of alum baking-powder. JAMA 57(10), 816–821 (1911).
    • 28 Exley C. Aluminium and medicine. In: Molecular and Supramolecular Bioinorganic Chemistry: Applications in Medical Sciences. Merce ALR, Felcman J, Recio MAL (Eds). Nova Biomedical Books, NY, USA, 45–68 (2009).
    • 29 Tomljenovic L, Shaw CA. Aluminum vaccine adjuvants: are they safe? Curr. Med. Chem. 18(17), 2630–2637 (2011).
    • 30 Yokel RA, Hicks CL, Florence RL. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem. Toxicol. 46(6), 2261–2266 (2008).
    • 31 Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated minireview. Pharmacol. Toxicol. 88(4), 159–167 (2001).
    • 32 Walton JR. Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer's disease. Neurotoxicology 30(6), 1059–1069 (2009).
    • 33 Walton JR. Aluminum in hippocampal neurons from humans with Alzheimer's disease. Neurotoxicology 27(3), 385–394 (2006).
    • 34 Kowall NW, Pendlebury WW, Kessler JB, Perl DP, Beal MF. Aluminum-induced neurofibrillary degeneration affects a subset of neurons in rabbit cerebral cortex, basal forebrain and upper brainstem. Neuroscience 29(2), 329–337 (1989).
    • 35 Polizzi S, Pira E, Ferrara M et al. Neurotoxic effects of aluminium among foundry workers and Alzheimer's disease. Neurotoxicology 23(6), 761–774 (2002).
    • 36 Sinczuk-Walczak H, Szymczak M, Razniewska G, Matczak W, Szymczak W. Effects of occupational exposure to aluminum on nervous system: clinical and electroencephalographic findings. Int. J. Occup. Med. Environ. Health 16(4), 301–310 (2003).
    • 37 Saiyed SM, Yokel RA. Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Addit. Contam. 22(3), 234–244 (2005).
    • 38 Greger JL. Aluminum metabolism. Annu Rev. Nutr. 13, 43–63 (1993).
    • 39 Pennington JA, Schoen SA. Estimates of dietary exposure to aluminium. Food Addit. Contam. 12(1), 119–128 (1995).
    • 40 Food and Agriculture Organization (FAO)/WHO. Summary and conclusions of the sixty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 67th meeting in Rome, Italy, 20–29 June 2006. ftp://ftp.fao.org/ag/agn/jecfa/jecfa67_final.pdf
    • 41 Flendrig JA, Kruis H, Das HA. Aluminium intoxication: the cause of dialysis dementia? Proc. Eur. Dial. Transpl. Assoc. 13, 355–368 (1976).
    • 42 Rozas VV, Port FK, Easterling RE. An outbreak of dialysis dementia due to aluminum in the dialysate. J. Dial. 2(5–6), 459–470 (1978).
    • 43 Melendez L, Santos D, Luna Polido L et al. Aluminium and other metals may pose a risk to children with autism spectrum disorder: biochemical and behavioural impairments. Clin. Exp. Pharmacol. 3, 1 (2013).
    • 44 Yasuda H, Tsutsui T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int. J. Environ. Res. Public Health 10(11), 6027–6043 (2013).
    • 45 Seneff S, Davidson RM, Liu J. Empirical data confirm autism symptoms related to aluminum and acetaminophen exposure. Entropy 14, 2227–2253 (2012).
    • 46 Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J. Inorg. Biochem. 105(11), 1489–1499 (2011).
    • 47 Perl DP, Moalem S. Aluminum, Alzheimer's disease and the geospatial occurrence of similar disorders. Rev. Mineral Geochem. 64, 115–134 (2006).
    • 48 Exley C. Aluminum and Alzheimer's disease. J. Alzheimers Dis. 3(6), 551–552 (2001).
    • 49 McLachlan DRC, Krishnan SS, Dalton AJ. Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science 180(85), 511–513 (1973).
    • 50 McLachlan DRC, Dalton AJ. Alterations in short-term retention, conditioned avoidance response acquisition and motivation following aluminum induced neurofibrillary degeneration. Physiol. Behav. 10(5), 925–933 (1973).
    • 51 Lukiw WJ. Aluminum and gene transcription in the mammalian central nervous system – implications for Alzheimer's disease. In: Aluminium and Alzheimer's Disease: The science that Describes the Link (1st Edition). Exley C (Ed.), Elsevier Science, Amsterdam, The Netherlands, 147–169 (2001).
    • 52 Lukiw WJ. Evidence supporting a biological role for aluminum in chromatin compaction and epigenetics. J. Inorg. Biochem. 104(9), 1010–1012 (2010).
    • 53 Lukiw WJ, Kruck TP, McLachlan DR. Linker histone–DNA complexes: enhanced stability in the presence of aluminum lactate and implications for Alzheimer's disease. FEBS Lett. 253(1–2), 59–62 (1989).
    • 54 Wu J, Du F, Zhang P, Khan IA, Chen J, Liang Y. Thermodynamics of the interaction of aluminum ions with DNA: implications for the biological function of aluminum. J. Inorg. Biochem. 99(5), 1145–1154 (2005).
    • 55 Lukiw WJ, LeBlanc HJ, Carver LA, McLachlan DR, Bazan NG. Run-on gene transcription in human neocortical nuclei. Inhibition by nanomolar aluminum and implications for neurodegenerative disease. J. Mol. Neurosci. 11(1), 67–78 (1998).
    • 56 McLachlan DRC, Lukiw WJ, Kruck TPA. Aluminum, altered transcription, and the pathogenesis of Alzheimer's disease. Environ. Geochem. Health 12(1–2), 103–114 (1990).
    • 57 Alexandrov PN, Zhao Y, Pogue AI et al. Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J. Alzheimers Dis. 8(2), 117–127; discussion 209–115 (2005).
    • 58 Lukiw WJ, Percy ME, Kruck TP. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J. Inorg. Biochem. 99(9), 1895–1898 (2005).
    • 59 Lukiw WJ, Bazan NG. Neuroinflammatory signaling upregulation in Alzheimer's disease. Neurochem. Res. 25(9–10), 1173–1184 (2000).
    • 60 Herbert MR, Russo JP, Yang S et al. Autism and environmental genomics. Neurotoxicology 27(5), 671–684 (2006).
    • 61 Ruiperez F, Mujika JI, Ugalde JM, Exley C, Lopez X. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II). J. Inorg. Biochem. 117, 118–123 (2012).
    • 62 Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94(18), 9866–9868 (1997).
    • 63 Carson BL. Aluminum compounds. Review of toxicological literature, abridged final report: p 84. Integrated Laboratory Systems, Research Triangle Park, NC, USA (2000). http://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/aluminum_508.pdf
    • 64 Shafer TJ, Mundy WR. Effects of aluminum on neuronal signal transduction: mechanisms underlying disruption of phosphoinositide hydrolysis. Gen. Pharmacol. 26(5), 889–895 (1995).
    • 65 Mundy WR, Kodavanti PR, Dulchinos VF, Tilson HA. Aluminum alters calcium transport in plasma membrane and endoplasmic reticulum from rat brain. J. Biochem. Toxicol. 9(1), 17–23 (1994).
    • 66 Macdonald TL, Humphreys WG, Martin RB. Promotion of tubulin assembly by aluminum ion in vitro. Science 236(4798), 183–186 (1987).
    • 67 McLachlan DRC, Farnell BJ. Cellular mechanisms of aluminium toxicity. Ann. Ist. Super Sanita 22(2), 697–702 (1986).
    • 68 Siegel N, Haug A. Aluminum interaction with calmodulin. Evidence for altered structure and function from optical and enzymatic studies. Biochim. Biophys. Acta 744(1), 36–45 (1983).
    • 69 Joshi JG. Neurochemical hypothesis: participation by aluminum in producing critical mass of colocalized errors in brain leads to neurological disease. Comp. Biochem. Physiol. C. 100(1–2), 103–105 (1991).
    • 70 Joshi JG, Dhar M, Clauberg M, Chauthaiwale V. Iron and aluminum homeostasis in neural disorders. Environ. Health Perspect. 102(Suppl. 3), 207–213 (1994).
    • 71 Roskams AJ, Connor JR. Aluminum access to the brain: a role for transferrin and its receptor. Proc. Natl Acad. Sci. USA 87(22), 9024–9027 (1990).
    • 72 Exley C. A molecular mechanism of aluminium-induced Alzheimer's disease? J. Inorg. Biochem. 76(2), 133–140 (1999).
    • 73 Silva VS, Duarte AI, Rego AC, Oliveira CR, Goncalves PP. Effect of chronic exposure to aluminium on isoform expression and activity of rat (Na+/K+)ATPase. Toxicol. Sci. 88(2), 485–494 (2005).
    • 74 Exley C, Price NC, Birchall JD. Aluminum inhibition of hexokinase activity in vitro: a study in biological availability. J. Inorg. Biochem. 54(4), 297–304 (1994).
    • 75 McLachlan DRC, Dam TV, Farnell BJ, Lewis PN. Aluminum inhibition of ADP-ribosylation in vivo and in vitro. Neurobehav. Toxicol. Teratol. 5(6), 645–647 (1983).
    • 76 Cherroret G, Desor D, Hutin MF, Burnel D, Capolaghi B, Lehr PR. Effects of aluminum chloride on normal and uremic adult male rats. Tissue distribution, brain choline acetyltransferase activity, and some biological variables. Biol. Trace Elem. Res. 54(1), 43–53 (1996).
    • 77 King RG. Do raised brain aluminium levels in Alzheimer's dementia contribute to cholinergic neuronal deficits? Med. Hypotheses 14(3), 301–306 (1984).
    • 78 King RG, Sharp JA, Boura AL. Aluminium, choline transportation and Alzheimer's disease. Med. J. Aust. 2(12), 606–607 (1983).
    • 79 Huber CT, Frieden E. The inhibition of ferroxidase by trivalent and other metal ions. J. Biol. Chem. 245(15), 3979–3984 (1970).
    • 80 Abdel-Ghany M, el-Sebae AK, Shalloway D. Aluminum-induced nonenzymatic phospho-incorporation into human tau and other proteins. J. Biol. Chem. 268(16), 11976–11981 (1993).
    • 81 Banks WA, Kastin AJ. Aluminum-induced neurotoxicity: alterations in membrane function at the blood–brain barrier. Neurosci. Biobehav. Rev. 13(1), 47–53 (1989).
    • 82 Walton JR. Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 30(2), 182–193 (2009).
    • 83 Walton JR, Wang MX. APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer's disease. J. Inorg. Biochem. 103(11), 1548–1554 (2009).
    • 84 Nehru B, Anand P. Oxidative damage following chronic aluminium exposure in adult and pup rat brains. J. Trace Elem. Med. Biol. 19(2–3), 203–208 (2005).
    • 85 Jing Y, Wang Z, Song Y. Quantitative study of aluminum-induced changes in synaptic ultrastructure in rats. Synapse 52(4), 292–298 (2004).
    • 86 Deloncle R, Fauconneau B, Piriou A, Huguet F, Guillard O. Aluminum L-glutamate complex in rat brain cortex: in vivo prevention of aluminum deposit by magnesium D-aspartate. Brain Res. 946(2), 247–252 (2002).
    • 87 Matyja E. Aluminum enhances glutamate-mediated neurotoxicity in organotypic cultures of rat hippocampus. Folia Neuropathol. 38(2), 47–53 (2000).
    • 88 Walton JR. Amyloid, aluminium and the aetiology of Alzheimer's disease. Med. J. Aust. 164(6), 382–383 (1996).
    • 89 Bondy SC, Ali SF, Guo-Ross S. Aluminum but not iron treatment induces pro-oxidant events in the rat brain. Mol. Chem. Neuropathol. 34(2–3), 219–232 (1998).
    • 90 Jope RS, Johnson GV. Neurotoxic effects of dietary aluminium. Ciba Found Symp. 169, 254–262; discussion 262–257 (1992).
    • 91 Johnson GV, Watson AL Jr, Lartius R, Uemura E, Jope RS. Dietary aluminum selectively decreases MAP-2 in brains of developing and adult rats. Neurotoxicology 13(2), 463–474 (1992).
    • 92 Bowdler NC, Beasley DS, Fritze EC et al. Behavioral effects of aluminum ingestion on animal and human subjects. Pharmacol. Biochem. Behav. 10(4), 505–512 (1979).
    • 93 Thorne BM, Donohoe T, Lin KN, Lyon S, Medeiros DM, Weaver ML. Aluminum ingestion and behavior in the Long-Evans rat. Physiol. Behav. 36(1), 63–67 (1986).
    • 94 Yokel RA, Allen DD, Meyer JJ. Studies of aluminum neurobehavioral toxicity in the intact mammal. Cell Mol. Neurobiol. 14(6), 791–808 (1994).
    • 95 Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J. Neurosci. Res. 75(4), 565–572 (2004).
    • 96 Pivnick EK, Kerr NC, Kaufman RA, Jones DP, Chesney RW. Rickets secondary to phosphate depletion. A sequela of antacid use in infancy. Clin. Pediatr. 34(2), 73–78 (1995).
    • 97 McDermott JR, Smith AI, Iqbal K, Wisniewski HM. Brain aluminum in aging and Alzheimer disease. Neurology 29(6), 809–814 (1979).
    • 98 Crapper DR, Quittkat S, Krishnan SS, Dalton AJ, De Boni U. Intranuclear aluminum content in Alzheimer's disease, dialysis encephalopathy, and experimental aluminum encephalopathy. Acta Neuropathol. 50(1), 19–24 (1980).
    • 99 Perl DP, Brody AR. Alzheimer's disease: x-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208(4441), 297–299 (1980).
    • 100 Candy JM, Oakley AE, Mountfort SA et al. The imaging and quantification of aluminium in the human brain using dynamic secondary ion mass spectrometry (SIMS). Biol. Cell 74(1), 109–118 (1992).
    • 101 Edwardson JA, Candy JM, Ince PG et al. Aluminium accumulation, beta-amyloid deposition and neurofibrillary changes in the central nervous system. Ciba Found Symp. 169, 165–179; discussion 179–185 (1992).
    • 102 Lukiw WJ, Krishnan B, Wong L, Kruck TP, Bergeron C, Crapper McLachlan DR. Nuclear compartmentalization of aluminum in Alzheimer's disease (AD). Neurobiol. Aging. 13(1), 115–121 (1992).
    • 103 Perl DP, Moalem S. Aluminum and Alzheimer's disease, a personal perspective after 25 years. J. Alzheimers Dis. 9(3 Suppl.), 291–300 (2006).
    • 104 International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431(7011), 931–945 (2004).
    • 105 Bohrer D, do Nascimento PC, Mendonca JK, Polli VG, de Carvalho LM. Interaction of aluminium ions with some amino acids present in human blood. Amino Acids 27(1), 75–83 (2004).
    • 106 Brothers PJ, Ruggerio CE. Coordination and solution chemistry of the metals: biological, medical, and environmental relevance. In: The Group 13 Metals Aluminium, Gallium, Indium and Thallium, Chemical Patterns and Peculiarities. Aldridge S, Downs AJ (Eds.), John Wiley and Sons, Chichester, UK, 519–611 (2011).
    • 107 Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity in pediatric populations. Lupus 21(2), 223–230 (2012).
    • 108 Caulfield MJ, Shi L, Wang S et al. Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice. Hum. Vaccin. 3(4), 139–145 (2007).
    • 109 Mitkus RJ, King DB, Hess MA, Forshee RA, Walderhaug MO. Updated aluminum pharmacokinetics following infant exposures through diet and vaccination. Vaccine 29(51), 9538–9543 (2011).
    • 110 Priest ND. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. J. Environ. Monit. 6(5), 375–403 (2004).
    • 111 Flarend RE, Hem SL, White JL et al. In vivo absorption of aluminium-containing vaccine adjuvants using 26Al. Vaccine 15(12–13), 1314–1318 (1997).
    • 112 Hem SL. Elimination of aluminum adjuvants. Vaccine 20(Suppl.), S40–S43 (2002).
    • 113 Lee SH. Melting profiles may affect detection of residual HPV L1 gene DNA fragments in Gardasil. Curr. Med. Chem. 21(7), 932–940 (2014).
    • 114 Lee SH. Topological conformational changes of human papillomavirus (HPV) DNA bound to an insoluble aluminum salt-A study by low temperature PCR Adv. Biol. Chem. 3, 76–85 (2013).
    • 115 Lee SH. Detection of human papillomavirus L1 gene DNA fragments in postmortem blood and spleen after Gardasil® vaccination – a case report Adv. Biosc. Biotech. 3, 1214–1224 (2012).
    • 116 Walton JR. A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neurosci. Lett. 412(1), 29–33 (2007).
    • 117 Gherardi RK, Coquet M, Cherin P et al. Macrophagic myofasciitis: an emerging entity. Groupe d’Etudes et Recherche sur les Maladies Musculaires Acquises et Dysimmunitaires (GERMMAD) de l’Association Francaise contre les Myopathies (AFM). Lancet 352(9125), 347–352 (1998).
    • 118 Gherardi RK, Coquet M, Cherin P et al. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 124(Pt 9), 1821–1831 (2001). •• Control study showing that MMF constitutes a systemic pathology rather than simply a presence of a benign localized aluminum-rich muscle lesion as frequently falsely contended.
    • 119 Authier FJ, Sauvat S, Champey J, Drogou I, Coquet M, Gherardi RK. Chronic fatigue syndrome in patients with macrophagic myofasciitis. Arthritis Rheum. 48(2), 569–570 (2003).
    • 120 Gherardi RK, Authier FJ. Aluminum inclusion macrophagic myofasciitis: a recently identified condition. Immunol. Allergy Clin. North Am. 23(4), 699–712 (2003).
    • 121 Hassan IS, Bannister BA, Akbar A, Weir W, Bofill M. A study of the immunology of the chronic fatigue syndrome: correlation of immunologic parameters to health dysfunction. Clin. Immunol. Immunopathol. 87(1), 60–67 (1998).
    • 122 Landay AL, Jessop C, Lennette ET, Levy JA. Chronic fatigue syndrome: clinical condition associated with immune activation. Lancet 338(8769), 707–712 (1991).
    • 123 Konstantinov K, von Mikecz A, Buchwald D, Jones J, Gerace L, Tan EM. Autoantibodies to nuclear envelope antigens in chronic fatigue syndrome. J. Clin. Invest. 98(8), 1888–1896 (1996).
    • 124 Nishikai M, Tomomatsu S, Hankins RW et al. Autoantibodies to a 68/48 kDa protein in chronic fatigue syndrome and primary fibromyalgia: a possible marker for hypersomnia and cognitive disorders. Rheumatology 40(7), 806–810 (2001).
    • 125 Gherardi RK, Plonquet A, André C, Intrator L, Poron F, Coquet M. Macrophagic myofasciitis: evidence for chronic local and systemic immune activation associated with persistence of aluminum hydroxide-loaded macrophages in muscle [abstract]. Neurology 56(Suppl. 3), A62 (2001).
    • 126 Brewer JM. (How) do aluminium adjuvants work? Immunol. Lett. 102(1), 10–15 (2006).
    • 127 Gherardi RK. [Lessons from macrophagic myofasciitis: towards definition of a vaccine adjuvant-related syndrome]. Rev. Neurol. 159(2), 162–164 (2003).
    • 128 Bonnefont-Rousselot D, Chantalat-Auger C, Teixeira A, Jaudon MC, Pelletier S, Cherin P. Blood oxidative stress status in patients with macrophagic myofasciitis. Biomed. Pharmacother. 58(9), 516–519 (2004).
    • 129 Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999).
    • 130 Petersen RC. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004).
    • 131 Dickerson BC, Wolk DA. Dysexecutive versus amnesic phenotypes of very mild Alzheimer's disease are associated with distinct clinical, genetic and cortical thinning characteristics. J. Neurol. Neurosurg. Psychiatry 82(1), 45–51 (2011).
    • 132 Cadusseau J, Ragunathan-Thangarajah N, Surenaud M, Hue S, Authier FJ, Gherardi RK. Selective elevation of circulating CCL2/MCP1 levels in patients with longstanding post-vaccinal macrophagic myofasciitis and ASIA. Curr. Med. Chem. 21(4), 511–517 (2014).
    • 133 Ganrot PO. Metabolism and possible health effects of aluminum. Environ. Health Perspect. 65, 363–441 (1986).
    • 134 Shin RW, Lee VM, Trojanowski JQ. Aluminum modifies the properties of Alzheimer's disease PHF tau proteins in vivo and in vitro. J. Neurosci. 14(11 Pt 2), 7221–7233 (1994).
    • 135 Redhead K, Quinlan GJ, Das RG, Gutteridge JM. Aluminium-adjuvanted vaccines transiently increase aluminium levels in murine brain tissue. Pharmacol. Toxicol. 70(4), 278–280 (1992).
    • 136 Petrik MS, Wong MC, Tabata RC, Garry RF, Shaw CA. Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. Neuromol. Med. 9(1), 83–100 (2007).
    • 137 Lujan L, Perez M, Salazar E et al. Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep. Immunol. Res. 56(2–3), 317–324 (2013). •• Experimental reproduction of an immune-mediated inflammatory syndrome induced by adjuvants in commercial sheep, linked to the repetitive inoculation of aluminum-containing adjuvants through vaccination.
    • 138 Corrigan FM, Reynolds GP, Ward NI. Hippocampal tin, aluminum and zinc in Alzheimer's disease. Biometals 6(3), 149–154 (1993).
    • 139 Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. J. Toxicol. Environ. Health B Crit. Rev. 11(8), 660–680 (2008).
    • 140 Poole RL, Hintz SR, Mackenzie NI, Kerner JA Jr. Aluminum exposure from pediatric parenteral nutrition: meeting the new FDA regulation. JPEN J. Parenter. Enteral. Nutr. 32(3), 242–246 (2008).
    • 141 Shoenfeld Y, Agmon-Levin N. ‘ASIA’ – autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun. 36(1), 4–8 (2011).
    • 142 Agmon-Levin N, Hughes G, Shoenfeld Y. The spectrum of ASIA: ‘Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants’. Lupus 21(2), 118–120 (2012).
    • 143 Rosenblum H, Shoenfeld Y, Amital H. The common immunogenic etiology of chronic fatigue syndrome: from infections to vaccines via adjuvants to the ASIA syndrome. Infect. Dis. Clin. N. Am. 25, 851–863 (2011).
    • 144 Meroni PL. Autoimmune or auto-inflammatory syndrome induced by adjuvants (ASIA): old truths and a new syndrome? J. Autoimmun. 36(1), 1–3 (2010).
    • 145 Quiroz-Rothe E, Ginel PJ, Pérez J, Lucena R, Rivero JLL. Vaccine-associated acute polyneuropathy resembling Guillain-Barré syndrome in a dog. Eur. J. Companion Animal Practice 15(2), 155 (2005).
    • 146 Hogenesch H, Azcona-Olivera J, Scott-Moncrieff C, Snyder PW, Glickman LT. Vaccine-induced autoimmunity in the dog. Adv. Vet. Med. 41, 733–747 (1999).
    • 147 Shoenfeld Y, Aron-Maor A. Vaccination and autoimmunity-’vaccinosis’: a dangerous liaison? J. Autoimmun. 14(1), 1–10 (2000).
    • 148 Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 453(7198), 1122–1126 (2008).
    • 149 Li H, Nookala S, Re F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J. Immunol. 178(8), 5271–5276 (2007).
    • 150 Exley C, Siesjo P, Eriksson H. The immunobiology of aluminium adjuvants: how do they really work? Trends Immunol. 31(3), 103–109 (2010).
    • 151 Jha S, Srivastava SY, Brickey WJ et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J. Neurosci. 30(47), 15811–15820 (2010).
    • 152 Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J. Neurosci. Res. 88(8), 1615–1631 (2010).
    • 153 Rajamaki K, Lappalainen J, Oorni K et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5(7), e11765 (2010).
    • 154 Wen H, Gris D, Lei Y et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12(5), 408–415 (2011).
    • 155 Bauer C, Duewell P, Mayer C et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59(9), 1192–1199 (2010).
    • 156 Exley C, Mamutse G, Korchazhkina O et al. Elevated urinary excretion of aluminium and iron in multiple sclerosis. Mult. Scler. 12(5), 533–540 (2006).
    • 157 Nohynek H, Jokinen J, Partinen M et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS ONE 7(3), e33536 (2012).
    • 158 Partinen M, Saarenpaa-Heikkila O, Ilveskoski I et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS ONE 7(3), e33723 (2012).
    • 159 Dauvilliers Y, Arnulf I, Lecendreux M et al. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France. Brain 136(Pt 8), 2486–2496 (2013).
    • 160 Szakacs A, Darin N, Hallbook T. Increased childhood incidence of narcolepsy in western Sweden after H1N1 influenza vaccination. Neurology 80(14), 1315–1321 (2013).
    • 161 Miller E, Andrews N, Stellitano L et al. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ 346, f794 (2013).
    • 162 Chen L, Zhang B, Toborek M. Autophagy is involved in nanoalumina-induced cerebrovascular toxicity. Nanomedicine 9(2), 212–221 (2013).
    • 163 Walton JR. An aluminum-based rat model for Alzheimer's disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J. Inorg. Biochem. 101(9), 1275–1284 (2007).
    • 164 Joshi JG. Aluminum, a neurotoxin which affects diverse metabolic reactions. Biofactors 2(3), 163–169 (1990).
    • 165 Exley C, Swarbrick L, Gherardi RK, Authier FJ. A role for the body burden of aluminium in vaccine-associated macrophagic myofasciitis and chronic fatigue syndrome. Med. Hypotheses 72(2), 135–139 (2009).
    • 166 Hindsen M. Contact allergy to aluminium in patients hyposensitized with aluminium-containing hyposensitizing extracts. Contact Dermatitis 53(5), 301–302 (2005).
    • 167 Bergfors E, Trollfors B, Inerot A. Unexpectedly high incidence of persistent itching nodules and delayed hypersensitivity to aluminium in children after the use of adsorbed vaccines from a single manufacturer. Vaccine 22(1), 64–69 (2003).
    • 168 Exley C, Birchall JD. The cellular toxicity of aluminium. J. Theor. Biol. 159(1), 83–98 (1992).
    • 169 Berin MC, Mayer L. Immunophysiology of experimental food allergy. Mucosal Immunol. 2(1), 24–32 (2009).
    • 170 Brandt EB, Strait RT, Hershko D et al. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Invest. 112(11), 1666–1677 (2003).
    • 171 Theoharides TC, Kempuraj D, Redwood L. Autism: an emerging ‘neuroimmune disorder’ in search of therapy. Expert Opin. Pharmacother. 10(13), 2127–2143 (2009).