We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cellular immunotherapy of cancer: an overview and future directions

    Ziqi Tao

    The Affiliated XuZhou Center Hospital of Nanjing University of Chinese Medicine, The Affiliated XuZhou Hospital of Medical College of Southeast University, Jiangsu, China

    Authors contributed equally

    Search for more papers by this author

    ,
    Shuang Li

    Department of Endocrinology, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China

    Authors contributed equally

    Search for more papers by this author

    ,
    Thomas E Ichim

    Immune Advisors LLC, San Diego, CA 92122, USA

    ,
    Junbao Yang

    Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA

    ,
    Neil Riordan

    Medistem Panama, Inc., City of Knowledge, Clayton, Republic of Panama

    ,
    Venkata Yenugonda

    Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA

    ,
    Ivan Babic

    Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA

    &
    Santosh Kesari

    *Author for correspondence:

    E-mail Address: kesaris@jwci.org

    Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA

    John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA

    Published Online:https://doi.org/10.2217/imt-2016-0086

    The clinical success of checkpoint inhibitors has led to a renaissance of interest in cancer immunotherapies. In particular, the possibility of ex vivo expanding autologous lymphocytes that specifically recognize tumor cells has attracted much research and clinical trial interest. In this review, we discuss the historical background of tumor immunotherapy using cell-based approaches, and provide some rationale for overcoming current barriers to success of autologous immunotherapy. An overview of adoptive transfer of lymphocytes, tumor infiltrating lymphocytes and dendritic cell therapies is provided. We conclude with discussing the possibility of gene-manipulating immune cells in order to augment therapeutic activity, including silencing of the immune-suppressive zinc finger orphan nuclear receptor, NR2F6, as an attractive means of overcoming tumor-associated immune suppression.

    References

    • 1 Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10(9), 909–915 (2004).
    • 2 Hsu FJ, Caspar CB, Czerwinski D et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma – long-term results of a clinical trial. Blood 89(9), 3129–3135 (1997).
    • 3 Neelapu SS, Gause BL, Nikcevich DA et al. Phase III randomized trial of patient-specific vaccination for previously untreated patients with follicular lymphoma in first complete remission: protocol summary and interim report. Clin. Lymphoma 6(1), 61–64 (2005).
    • 4 Rosenberg SA, Yang JC, Restifo NP. Reply-cancer vaccines: pessimism in check. Nat. Med. 10(12), 1279–1280 (2004).
    • 5 John T, Starmans MH, Chen YT et al. The role of cancer-testis antigens as predictive and prognostic markers in non-small cell lung cancer. PLoS One 8(7), e67876 (2013).
    • 6 Vansteenkiste J, Zielinski M, Linder A et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: Phase II randomized study results. J. Clin. Oncol. 31(19), 2396–2403 (2013).
    • 7 Hanagiri T, Shigematsu Y, Shinohara S et al. Clinical significance of expression of cancer/testis antigen and down-regulation of HLA class-I in patients with stage I non-small cell lung cancer. Anticancer Res. 33(5), 2123–2128 (2013).
    • 8 Hopewell EL, Zhao W, Fulp WJ et al. Lung tumor NF-kappaB signaling promotes T cell-mediated immune surveillance. J. Clin. Invest. 123(6), 2509–2522 (2013).
    • 9 Cohen EP, Kim TS. Neoplastic cells that express low levels of MHC class I determinants escape host immunity. Semin. Cancer Biol. 5(6), 419–428 (1994).
    • 10 June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol. Today 15(7), 321–331 (1994).
    • 11 Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 65(24), 11743–11751 (2005).
    • 12 Agrawal B, Krantz MJ, Reddish MA, Longenecker BM. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med. 4(1), 43–49 (1998).
    • 13 Hiltbold EM, Vlad AM, Ciborowski P, Watkins SC, Finn OJ. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J. Immunol. 165(7), 3730–3741 (2000).
    • 14 Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137(5), 1142–1162 (1973).
    • 15 Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 392(6673), 245–252 (1998).
    • 16 Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).
    • 17 Itano AA, Jenkins MK. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4(8), 733–739 (2003).
    • 18 Ravichandran KS. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35(4), 445–455 (2011).
    • 19 Hu M, Li K, Maskey N et al. Decreased intratumoral Foxp3 Tregs and increased dendritic cell density by neoadjuvant chemotherapy associated with favorable prognosis in advanced gastric cancer. Int. J. Clin. Exp. Pathol. 7(8), 4685–4694 (2014).
    • 20 Ayari C, Larue H, Hovington H et al. High level of mature tumor-infiltrating dendritic cells predicts progression to muscle invasion in bladder cancer. Hum. Pathol. 44(8), 1630–1637 (2013).
    • 21 Liska V, Vycital O, Daum O et al. Infiltration of colorectal carcinoma by S100+ dendritic cells and CD57+ lymphocytes as independent prognostic factors after radical surgical treatment. Anticancer Res. 32(5), 2129–2132 (2012).
    • 22 Ayari C, Larue H, Hovington H et al. Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy. Eur. Urol. 55(6), 1386–1395 (2009).
    • 23 Sternberg CN, Petrylak DP, Madan RA, Parker C. Progress in the treatment of advanced prostate cancer. Am. Soc. Clin. Oncol. Educ. Book doi:10.14694/EdBook_AM.2014.34.117 117–131 (2014).
    • 24 Gomella LG, Gelpi-Hammerschmidt F, Kundavram C. Practical guide to immunotherapy in castration resistant prostate cancer: the use of sipuleucel-T immunotherapy. Can. J. Urol. 21(2 Supp 1), 48–56 (2014).
    • 25 Tjoa BA, Simmons SJ, Bowes VA et al. Evaluation of Phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate 36(1), 39–44 (1998).
    • 26 Murphy GP, Tjoa BA, Simmons SJ et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a Phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 38(1), 73–78 (1999).
    • 27 Lodge PA, Jones LA, Bader RA, Murphy GP, Salgaller ML. Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a Phase II clinical trial. Cancer Res. 60(4), 829–833 (2000).
    • 28 Burch PA, Breen JK, Buckner JC et al. Priming tissue-specific cellular immunity in a Phase I trial of autologous dendritic cells for prostate cancer. Clin. Cancer Res. 6(6), 2175–2182 (2000).
    • 29 Small EJ, Fratesi P, Reese DM et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J. Clin. Oncol. 18(23), 3894–3903 (2000).
    • 30 Burch PA, Croghan GA, Gastineau DA et al. Immunotherapy (APC8015, Provenge) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a Phase II trial. Prostate 60(3), 197–204 (2004).
    • 31 Beinart G, Rini BI, Weinberg V, Small EJ. Antigen-presenting cells 8015 (Provenge) in patients with androgen-dependent, biochemically relapsed prostate cancer. Clin. Prostate Cancer 4(1), 55–60 (2005).
    • 32 Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
    • 33 Barrou B, Benoit G, Ouldkaci M et al. Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA. Cancer Immunol. Immunother. 53(5), 453–460 (2004).
    • 34 Perambakam S, Hallmeyer S, Reddy S et al. Induction of specific T cell immunity in patients with prostate cancer by vaccination with PSA146–154 peptide. Cancer Immunol. Immunother. 55(9), 1033–1042 (2006).
    • 35 Hildenbrand B, Sauer B, Kalis O et al. Immunotherapy of patients with hormone-refractory prostate carcinoma pre-treated with interferon-gamma and vaccinated with autologous PSA-peptide loaded dendritic cells – a pilot study. Prostate 67(5), 500–508 (2007).
    • 36 Fuessel S, Meye A, Schmitz M et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a Phase I clinical trial. Prostate 66(8), 811–821 (2006).
    • 37 Perroud MW, Jr, Honma HN, Barbeiro AS et al. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a Phase I pilot study. J. Exp. Clin. Cancer Res. 30 65 (2011).
    • 38 Waeckerle-Men Y, Uetz-Von Allmen E, Fopp M et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol. Immunother. 55(12), 1524–1533 (2006).
    • 39 Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 4(3), 328–332 (1998).
    • 40 Chakraborty NG, Sporn JR, Tortora AF et al. Immunization with a tumor-cell-lysate-loaded autologous-antigen-presenting-cell-based vaccine in melanoma. Cancer Immunol. Immunother. 47(1), 58–64 (1998).
    • 41 Wang F, Bade E, Kuniyoshi C et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freund‘s adjuvant for resected high-risk melanoma. Clin. Cancer Res. 5(10), 2756–2765 (1999).
    • 42 Thurner B, Haendle I, Roder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190(11), 1669–1678 (1999).
    • 43 Thomas R, Chambers M, Boytar R et al. Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph nodes after intradermal injection for melanoma immunotherapy. Melanoma Res. 9(5), 474–481 (1999).
    • 44 Mackensen A, Herbst B, Chen JL et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. J. Cancer 86(3), 385–392 (2000).
    • 45 Panelli MC, Wunderlich J, Jeffries J et al. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J. Immunother. 23(4), 487–498 (2000).
    • 46 Schuler-Thurner B, Dieckmann D, Keikavoussi P et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J. Immunol. 165(6), 3492–3496 (2000).
    • 47 Lau R, Wang F, Jeffery G et al. Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J. Immunother. 24(1), 66–78 (2001).
    • 48 Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 61(17), 6451–6458 (2001).
    • 49 Schuler-Thurner B, Schultz ES, Berger TG et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 195(10), 1279–1288 (2002).
    • 50 Palucka AK, Dhodapkar MV, Paczesny S et al. Single injection of CD34+ progenitor-derived dendritic cell vaccine can lead to induction of T-cell immunity in patients with stage IV melanoma. J. Immunother. 26(5), 432–439 (2003).
    • 51 Bedrosian I, Mick R, Xu S et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J. Clin. Oncol. 21(20), 3826–3835 (2003).
    • 52 Slingluff CL, Jr, Petroni GR, Yamshchikov GV et al. Clinical and immunologic results of a randomized Phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol. 21(21), 4016–4026 (2003).
    • 53 Hersey P, Menzies SW, Halliday GM et al. Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol. Immunother. 53(2), 125–134 (2004).
    • 54 Vilella R, Benitez D, Mila J et al. Pilot study of treatment of biochemotherapy-refractory stage IV melanoma patients with autologous dendritic cells pulsed with a heterologous melanoma cell line lysate. Cancer Immunol. Immunother. 53(7), 651–658 (2004).
    • 55 Palucka AK, Connolly J, Ueno H et al. Spontaneous proliferation and type 2 cytokine secretion by CD4+T cells in patients with metastatic melanoma vaccinated with antigen-pulsed dendritic cells. J. Clin. Immunol. 25(3), 288–295 (2005).
    • 56 Banchereau J, Ueno H, Dhodapkar M et al. Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J. Immunother. 28(5), 505–516 (2005).
    • 57 Trakatelli M, Toungouz M, Blocklet D et al. A new dendritic cell vaccine generated with interleukin-3 and interferon-beta induces CD8+ T cell responses against NA17-A2 tumor peptide in melanoma patients. Cancer Immunol. Immunother. 55(4), 469–474 (2006).
    • 58 Salcedo M, Bercovici N, Taylor R et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol. Immunother. 55(7), 819–829 (2006).
    • 59 Linette GP, Zhang D, Hodi FS et al. Immunization using autologous dendritic cells pulsed with the melanoma-associated antigen gp100-derived G280–9V peptide elicits CD8+ immunity. Clin. Cancer Res. 11(21), 7692–7699 (2005).
    • 60 Escobar A, Lopez M, Serrano A et al. Dendritic cell immunizations alone or combined with low doses of IL-2 induce specific immune responses in melanoma patients. Clin. Exp. Immunol. 142(3), 555–568 (2005).
    • 61 Tuettenberg A, Becker C, Huter E, Knop J, Enk AH, Jonuleit H. Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients. Int. J. Cancer 118(10), 2617–2627 (2006).
    • 62 Schadendorf D, Ugurel S, Schuler-Thurner B et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol. 17(4), 563–570 (2006).
    • 63 Di Pucchio T, Pilla L, Capone I et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-alpha results in the activation of specific CD8(+) T cells and monocyte/dendritic cell precursors. Cancer Res. 66(9), 4943–4951 (2006).
    • 64 Nakai N, Asai J, Ueda E, Takenaka H, Katoh N, Kishimoto S. Vaccination of Japanese patients with advanced melanoma with peptide, tumor lysate or both peptide and tumor lysate-pulsed mature, monocyte-derived dendritic cells. J. Dermatol. 33(7), 462–472 (2006).
    • 65 Palucka AK, Ueno H, Connolly J et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother. 29(5), 545–557 (2006).
    • 66 Lesimple T, Neidhard EM, Vignard V et al. Immunologic and clinical effects of injecting mature peptide-loaded dendritic cells by intralymphatic and intranodal routes in metastatic melanoma patients. Clin. Cancer Res. 12(24), 7380–7388 (2006).
    • 67 Guo J, Zhu J, Sheng X et al. Intratumoral injection of dendritic cells in combination with local hyperthermia induces systemic antitumor effect in patients with advanced melanoma. Int. J. Cancer 120(11), 2418–2425 (2007).
    • 68 O‘rourke MG, Johnson MK, Lanagan CM et al. Dendritic cell immunotherapy for stage IV melanoma. Melanoma Res. 17(5), 316–322 (2007).
    • 69 Bercovici N, Haicheur N, Massicard S et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J. Immunother. 31(1), 101–112 (2008).
    • 70 Hersey P, Halliday GM, Farrelly ML, Desilva C, Lett M, Menzies SW. Phase I/II study of treatment with matured dendritic cells with or without low dose IL-2 in patients with disseminated melanoma. Cancer Immunol. Immunother. 57(7), 1039–1051 (2008).
    • 71 Von Euw EM, Barrio MM, Furman D et al. A Phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression. J. Transl. Med. 6, 6 (2008).
    • 72 Carrasco J, Van Pel A, Neyns B et al. Vaccination of a melanoma patient with mature dendritic cells pulsed with MAGE-3 peptides triggers the activity of nonvaccine anti-tumor cells. J. Immunol. 180(5), 3585–3593 (2008).
    • 73 Redman BG, Chang AE, Whitfield J et al. Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma. J. Immunother. 31(6), 591–598 (2008).
    • 74 Daud AI, Mirza N, Lenox B et al. Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 26(19), 3235–3241 (2008).
    • 75 Engell-Noerregaard L, Hansen TH, Andersen MH, Thor Straten P, Svane IM. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol. Immunother. 58(1), 1–14 (2009).
    • 76 Nakai N, Katoh N, Germeraad WT et al. Immunohistological analysis of peptide-induced delayed-type hypersensitivity in advanced melanoma patients treated with melanoma antigen-pulsed mature monocyte-derived dendritic cell vaccination. J. Dermatol. Sci. 53(1), 40–47 (2009).
    • 77 Dillman RO, Selvan SR, Schiltz PM et al. Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report. Cancer Biother. Radiopharm. 24(3), 311–319 (2009).
    • 78 Chang JW, Hsieh JJ, Shen YC et al. Immunotherapy with dendritic cells pulsed by autologous dactinomycin-induced melanoma apoptotic bodies for patients with malignant melanoma. Melanoma Res. 19(5), 309–315 (2009).
    • 79 Trepiakas R, Berntsen A, Hadrup SR et al. Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a Phase I/II trial. Cytotherapy 12(6), 721–734 (2010).
    • 80 Jacobs JF, Punt CJ, Lesterhuis WJ et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a Phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 16(20), 5067–5078 (2010).
    • 81 Ribas A, Camacho LH, Lee SM et al. Multicenter Phase II study of matured dendritic cells pulsed with melanoma cell line lysates in patients with advanced melanoma. J. Transl. Med. 8, 89 (2010).
    • 82 Ridolfi L, Petrini M, Fiammenghi L et al. Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis. Clin. Dev. Immunol. 2010, 504979 (2010).
    • 83 Cornforth AN, Fowler AW, Carbonell DJ, Dillman RO. Resistance to the proapoptotic effects of interferon-gamma on melanoma cells used in patient-specific dendritic cell immunotherapy is associated with improved overall survival. Cancer Immunol. Immunother. 60(1), 123–131 (2011).
    • 84 Lesterhuis WJ, Schreibelt G, Scharenborg NM et al. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol. Immunother. 60(2), 249–260 (2011).
    • 85 Bjoern J, Brimnes MK, Andersen MH, Thor Straten P, Svane IM. Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2. Scand. J. Immunol. 73(3), 222–233 (2011).
    • 86 Steele JC, Rao A, Marsden JR et al. Phase I/II trial of a dendritic cell vaccine transfected with DNA encoding melan A and gp100 for patients with metastatic melanoma. Gene Ther. 18(6), 584–593 (2011).
    • 87 Kim DS, Kim DH, Goo B et al. Immunotherapy of malignant melanoma with tumor lysate-pulsed autologous monocyte-derived dendritic cells. Yonsei Med. J. 52(6), 990–998 (2011).
    • 88 Ellebaek E, Engell-Noerregaard L, Iversen TZ et al. Metastatic melanoma patients treated with dendritic cell vaccination, IL-2 and metronomic cyclophosphamide: results from a Phase II trial. Cancer Immunol. Immunother. 61(10), 1791–1804 (2012).
    • 89 Dillman RO, Cornforth AN, Depriest C et al. Tumor stem cell antigens as consolidative active specific immunotherapy: a randomized Phase II trial of dendritic cells versus tumor cells in patients with metastatic melanoma. J. Immunother. 35(8), 641–649 (2012).
    • 90 Dannull J, Haley NR, Archer G et al. Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J. Clin. Invest. 123(7), 3135–3145 (2013).
    • 91 Finkelstein SE, Iclozan C, Bui MM et al. Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int. J. Radiat. Oncol. Biol. Phys. 82(2), 924–932 (2012).
    • 92 Stift A, Sachet M, Yagubian R et al. Dendritic cell vaccination in medullary thyroid carcinoma. Clin. Cancer Res. 10(9), 2944–2953 (2004).
    • 93 Kuwabara K, Nishishita T, Morishita M et al. Results of a Phase I clinical study using dendritic cell vaccinations for thyroid cancer. Thyroid 17(1), 53–58 (2007).
    • 94 Bachleitner-Hofmann T, Friedl J, Hassler M et al. Pilot trial of autologous dendritic cells loaded with tumor lysate(s) from allogeneic tumor cell lines in patients with metastatic medullary thyroid carcinoma. Oncol. Rep. 21(6), 1585–1592 (2009).
    • 95 Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61(3), 842–847 (2001).
    • 96 Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical Phase I/II trial. Br. J. Cancer 89(7), 1172–1179 (2003).
    • 97 Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64(14), 4973–4979 (2004).
    • 98 Yamanaka R, Honma J, Tsuchiya N, Yajima N, Kobayashi T, Tanaka R. Tumor lysate and IL-18 loaded dendritic cells elicits Th1 response, tumor-specific CD8+ cytotoxic T cells in patients with malignant glioma. J. Neurooncol. 72(2), 107–113 (2005).
    • 99 Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial. Clin. Cancer Res. 11(11), 4160–4167 (2005).
    • 100 Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11(15), 5515–5525 (2005).
    • 101 Walker DG, Laherty R, Tomlinson FH, Chuah T, Schmidt C. Results of a Phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J. Clin. Neurosci. 15(2), 114–121 (2008).
    • 102 Leplina OY, Stupak VV, Kozlov YP et al. Use of interferon-alpha-induced dendritic cells in the therapy of patients with malignant brain gliomas. Bull. Exp. Biol. Med. 143(4), 528–534 (2007).
    • 103 De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 14(10), 3098–3104 (2008).
    • 104 Ardon H, De Vleeschouwer S, Van Calenbergh F et al. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr. Blood Cancer 54(4), 519–525 (2010).
    • 105 Prins RM, Soto H, Konkankit V et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 17(6), 1603–1615 (2011).
    • 106 Okada H, Kalinski P, Ueda R et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
    • 107 Fadul CE, Fisher JL, Hampton TH et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J. Immunother. 34(4), 382–389 (2011).
    • 108 Chang CN, Huang YC, Yang DM et al. A Phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J. Clin. Neurosci. 18(8), 1048–1054 (2011).
    • 109 Cho DY, Yang WK, Lee HC et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a Phase II clinical trial. World Neurosurg. 77(5–6), 736–744 (2012).
    • 110 Iwami K, Shimato S, Ohno M et al. Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor alpha2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele. Cytotherapy 14(6), 733–742 (2012).
    • 111 Fong B, Jin R, Wang X et al. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS ONE 7(4), e32614 (2012).
    • 112 De Vleeschouwer S, Ardon H, Van Calenbergh F et al. Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer Immunol. Immunother. 61(11), 2105–2112 (2012).
    • 113 Phuphanich S, Wheeler CJ, Rudnick JD et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62(1), 125–135 (2013).
    • 114 Akiyama Y, Oshita C, Kume A et al. alpha-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a Phase I clinical trial. BMC Cancer 12 623 (2012).
    • 115 Prins RM, Wang X, Soto H et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J. Immunother. 36(2), 152–157 (2013).
    • 116 Shah AH, Bregy A, Heros DO, Komotar RJ, Goldberg J. Dendritic cell vaccine for recurrent high-grade gliomas in pediatric and adult subjects: clinical trial protocol. Neurosurgery 73(5), 863–867 (2013).
    • 117 Reichardt VL, Okada CY, Liso A et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood 93(7), 2411–2419 (1999).
    • 118 Lim SH, Bailey-Wood R. Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int. J. Cancer 83(2), 215–222 (1999).
    • 119 Motta MR, Castellani S, Rizzi S et al. Generation of dendritic cells from CD14+ monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination. Br. J. Haematol. 121(2), 240–250 (2003).
    • 120 Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 88(10), 1139–1149 (2003).
    • 121 Guardino AE, Rajapaksa R, Ong KH, Sheehan K, Levy R. Production of myeloid dendritic cells (DC) pulsed with tumor-specific idiotype protein for vaccination of patients with multiple myeloma. Cytotherapy 8(3), 277–289 (2006).
    • 122 Lacy MQ, Mandrekar S, Dispenzieri A et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am. J. Hematol. 84(12), 799–802 (2009).
    • 123 Yi Q, Szmania S, Freeman J et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br. J. Haematol. 150(5), 554–564 (2010).
    • 124 Rollig C, Schmidt C, Bornhauser M, Ehninger G, Schmitz M, Auffermann-Gretzinger S. Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J. Immunother. 34(1), 100–106 (2011).
    • 125 Zahradova L, Mollova K, Ocadlikova D et al. Efficacy and safety of Id-protein-loaded dendritic cell vaccine in patients with multiple myeloma – Phase II study results. Neoplasma 59(4), 440–449 (2012).
    • 126 Timmerman JM, Czerwinski DK, Davis TA et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99(5), 1517–1526 (2002).
    • 127 Maier T, Tun-Kyi A, Tassis A et al. Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 102(7), 2338–2344 (2003).
    • 128 Di Nicola M, Zappasodi R, Carlo-Stella C et al. Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood 113(1), 18–27 (2009).
    • 129 Hus I, Rolinski J, Tabarkiewicz J et al. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia 19(9), 1621–1627 (2005).
    • 130 Li L, Giannopoulos K, Reinhardt P et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int. J. Oncol. 28(4), 855–861 (2006).
    • 131 Roddie H, Klammer M, Thomas C et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br. J. Haematol. 133(2), 152–157 (2006).
    • 132 Litzow MR, Dietz AB, Bulur PA et al. Testing the safety of clinical-grade mature autologous myeloid DC in a Phase I clinical immunotherapy trial of CML. Cytotherapy 8(3), 290–298 (2006).
    • 133 Westermann J, Kopp J, Van Lessen A et al. Vaccination with autologous non-irradiated dendritic cells in patients with bcr/abl+ chronic myeloid leukaemia. Br. J. Haematol. 137(4), 297–306 (2007).
    • 134 Hus I, Schmitt M, Tabarkiewicz J et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia 22(5), 1007–1017 (2008).
    • 135 Palma M, Adamson L, Hansson L et al. Development of a dendritic cell-based vaccine for chronic lymphocytic leukemia. Cancer Immunol. Immunother. 57(11), 1705–1710 (2008).
    • 136 Van Tendeloo VF, Van De Velde A, Van Driessche A et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl Acad. Sci. USA 107(31), 13824–13829 (2010).
    • 137 Iwashita Y, Tahara K, Goto S et al. A Phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol. Immunother. 52(3), 155–161 (2003).
    • 138 Lee WC, Wang HC, Hung CF, Huang PF, Lia CR, Chen MF. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J. Immunother. 28(5), 496–504 (2005).
    • 139 Butterfield LH, Ribas A, Dissette VB et al. A Phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin. Cancer Res. 12(9), 2817–2825 (2006).
    • 140 Palmer DH, Midgley RS, Mirza N et al. A Phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 49(1), 124–132 (2009).
    • 141 El Ansary M, Mogawer S, Elhamid SA et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J. Cancer Res. Clin. Oncol. 139(1), 39–48 (2013).
    • 142 Tada F, Abe M, Hirooka M et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int. J. Oncol. 41(5), 1601–1609 (2012).
    • 143 Ueda Y, Itoh T, Nukaya I et al. Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int. J. Oncol. 24(4), 909–917 (2004).
    • 144 Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J, Yannelli J. Autologous dendritic cell vaccines for non-small-cell lung cancer. J. Clin. Oncol. 22(14), 2808–2815 (2004).
    • 145 Chang GC, Lan HC, Juang SH et al. A pilot clinical trial of vaccination with dendritic cells pulsed with autologous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma. Cancer 103(4), 763–771 (2005).
    • 146 Yannelli JR, Sturgill J, Foody T, Hirschowitz E. The large scale generation of dendritic cells for the immunization of patients with non-small cell lung cancer (NSCLC). Lung Cancer 47(3), 337–350 (2005).
    • 147 Ishikawa A, Motohashi S, Ishikawa E et al. A Phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 11(5), 1910–1917 (2005).
    • 148 Antonia SJ, Mirza N, Fricke I et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 12(3 Pt 1), 878–887 (2006).
    • 149 Perrot I, Blanchard D, Freymond N et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J. Immunol. 178(5), 2763–2769 (2007).
    • 150 Hirschowitz EA, Foody T, Hidalgo GE, Yannelli JR. Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells. Lung Cancer 57(3), 365–372 (2007).
    • 151 Baratelli F, Takedatsu H, Hazra S et al. Pre-clinical characterization of GMP grade CCL21-gene modified dendritic cells for application in a Phase I trial in non-small cell lung cancer. J. Transl. Med. 6 38 (2008).
    • 152 Hegmans JP, Veltman JD, Lambers ME et al. Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am. J. Respir. Crit. Care Med. 181(12), 1383–1390 (2010).
    • 153 Um SJ, Choi YJ, Shin HJ et al. Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer. Lung Cancer 70(2), 188–194 (2010).
    • 154 Chiappori AA, Soliman H, Janssen WE, Antonia SJ, Gabrilovich DI. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin. Biol. Ther. 10(6), 983–991 (2010).
    • 155 Skachkova OV, Khranovska NM, Gorbach OI, Svergun NM, Sydor RI, Nikulina VV. Immunological markers of anti-tumor dendritic cells vaccine efficiency in patients with non-small cell lung cancer. Exp. Oncol. 35(2), 109–113 (2013).
    • 156 Hernando JJ, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a Phase I trial. Cancer Immunol. Immunother. 51(1), 45–52 (2002).
    • 157 Rahma OE, Ashtar E, Czystowska M et al. A gynecologic oncology group Phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients. Cancer Immunol. Immunother. 61(3), 373–384 (2012).
    • 158 Chu CS, Boyer J, Schullery DS et al. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol. Immunother. 61(5), 629–641 (2012).
    • 159 Kandalaft LE, Chiang CL, Tanyi J et al. A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. J. Transl. Med. 11, 149 (2013).
    • 160 Lepisto AJ, Moser AJ, Zeh H et al. A Phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 6(B), 955–964 (2008).
    • 161 Rong Y, Qin X, Jin D et al. A Phase I pilot trial of MUC1-peptide-pulsed dendritic cells in the treatment of advanced pancreatic cancer. Clin. Exp. Med. 12(3), 173–180 (2012).
    • 162 Endo H, Saito T, Kenjo A et al. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK-432 for resectable pancreatic cancer patients. J. Hepatobiliary Pancreat. Sci. 19(4), 465–475 (2012).
    • 163 Yoshimura K, Minami T, Nozawa M et al. A Phase II randomized controlled trial of personalized peptide vaccine immunotherapy with low-dose dexamethasone versus dexamethasone alone in chemotherapy-naive castration-resistant prostate cancer. Eur. Urol. 70(1), 35–41 (2016).
    • 164 Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155(6), 1823–1841 (1982).
    • 165 Rosenberg SA, Lotze MT, Muul LM et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant IL-2 to patients with metastatic cancer. N. Engl. J. Med. 313(23), 1485–1492 (1985).
    • 166 Rosenberg SA, Lotze MT, Muul LM et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and IL-2 or high-dose IL-2 alone. N. Engl. J. Med. 316(15), 889–897 (1987).
    • 167 Law TM, Motzer RJ, Mazumdar M et al. Phase III randomized trial of IL-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76(5), 824–832 (1995).
    • 168 Weiss GR, Margolin KA, Aronson FR et al. A randomized Phase II trial of continuous infusion IL-2 or bolus injection IL-2 plus lymphokine-activated killer cells for advanced renal cell carcinoma. J. Clin. Oncol. 10(2), 275–281 (1992).
    • 169 Clark JW, Smith JW, 2nd, Steis RG et al. Interleukin 2 and lymphokine-activated killer cell therapy: analysis of a bolus interleukin 2 and a continuous infusion interleukin 2 regimen. Cancer Res. 50(22), 7343–7350 (1990).
    • 170 Dillman RO. The clinical experience with IL-2 in cancer therapy. Cancer Biother. 9(3), 183–209 (1994).
    • 171 Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233(4770), 1318–1321 (1986).
    • 172 Cameron RB, Spiess PJ, Rosenberg SA. Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin 2, and local tumor irradiation. Studies on the mechanism of action. J. Exp. Med. 171(1), 249–263 (1990).
    • 173 Rosenberg SA, Packard BS, Aebersold PM et al. Use of tumor-infiltrating lymphocytes and IL-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319(25), 1676–1680 (1988).
    • 174 Rosenberg SA, Yannelli JR, Yang JC et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. 86(15), 1159–1166 (1994).
    • 175 Jiang SS, Tang Y, Zhang YJ et al. A Phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget 6(38), 41339–41349 (2015).
    • 176 Zhang YX, Wang XY, Liu JB, Zhang SQ, Chen YR. Effects of auto-tumor infiltrating lymphocytes induced by interleukin (IL)-12 with IL-2 on patients of primary hepatic carcinoma. Zhonghua yi xue za zhi 88(14), 973–976 (2008).
    • 177 Santoiemma PP, Powell DJ Jr. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol. Ther. 16(6), 807–820 (2015).
    • 178 Freedman RS, Kudelka AP, Kavanagh JJ et al. Clinical and biological effects of intraperitoneal injections of recombinant interferon-gamma and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma. Clin. Cancer Res. 6(6), 2268–2278 (2000).
    • 179 Hua Z, Lu J, Li H. [Clinical study on immunotherapy of ovarian cancer with tumor infiltrating lymphocytes]. Zhonghua Fu Chan Ke Za Zhi 31(9), 555–557 (1996).
    • 180 Freedman RS, Edwards CL, Kavanagh JJ et al. Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor-infiltrating lymphocytes and low-dose recombinant IL-2: a pilot trial. J. Immunother. Emphasis Tumor Immunol. 16(3), 198–210 (1994).
    • 181 Svane IM, Verdegaal EM. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol. Immunother. 63(10), 1081–1091 (2014).
    • 182 Khammari A, Knol AC, Nguyen JM et al. Adoptive TIL transfer in the adjuvant setting for melanoma: long-term patient survival. J. Immunol. Res. 2014, 186212 (2014).
    • 183 Besser MJ, Shapira-Frommer R, Itzhaki O et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin. Cancer Res. 19(17), 4792–4800 (2013).
    • 184 Pietra G, Semino C, Basso S et al. Analysis of the proliferative and phenotypic properties of tumor infiltrating lymphocytes expanded in vitro in the course of the clinical trial of adoptive immunotherapy of metastatic melanoma. Oncol. Rep. 4(1), 27–31 (1997).
    • 185 Semino C, Martini L, Queirolo P et al. Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer Res. 19(6C), 5645–5649 (1999).
    • 186 Kurnick JT, Kradin RL. Adoptive immunotherapy with recombinant interleukin 2, LAK and TIL. Allergol. Immunopathol. (Madr.) 19(5), 209–214 (1991).
    • 187 Melief CJ. Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv. Cancer Res. 58, 143–175 (1992).
    • 188 Ratto GB, Zino P, Mirabelli S et al. A randomized trial of adoptive immunotherapy with tumor-infiltrating lymphocytes and IL-2 versus standard therapy in the postoperative treatment of resected nonsmall cell lung carcinoma. Cancer 78(2), 244–251 (1996).
    • 189 Li D, Zhang X, Song Y. Treatment with autologous tumor-infiltrating lymphocytes and recombinant IL-2 in patients with lung carcinoma. Zhonghua Zhong Liu Za Zhi 17(2), 152–155 (1995).
    • 190 Belldegrun A, Tso CL, Kaboo R et al. Natural immune reactivity-associated therapeutic response in patients with metastatic renal cell carcinoma receiving tumor-infiltrating lymphocytes and IL-2 -based therapy. J. Immunother. Emphasis Tumor Immunol. 19(2), 149–161 (1996).
    • 191 Goedegebuure PS, Douville LM, Li H et al. Adoptive immunotherapy with tumor-infiltrating lymphocytes and IL-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study. J. Clin. Oncol. 13(8), 1939–1949 (1995).
    • 192 Bukowski RM, Sharfman W, Murthy S et al. Clinical results and characterization of tumor-infiltrating lymphocytes with or without recombinant interleukin 2 in human metastatic renal cell carcinoma. Cancer Res. 51(16), 4199–4205 (1991).
    • 193 Kradin RL, Kurnick JT, Lazarus DS et al. Tumour-infiltrating lymphocytes and IL-2 in treatment of advanced cancer. Lancet 1(8638), 577–580 (1989).
    • 194 Kolb HJ, Mittermuller J, Clemm C et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76(12), 2462–2465 (1990).
    • 195 Cullis JO, Jiang YZ, Schwarer AP, Hughes TP, Barrett AJ, Goldman JM. Donor leukocyte infusions for chronic myeloid leukemia in relapse after allogeneic bone marrow transplantation. Blood 79(5), 1379–1381 (1992).
    • 196 Porter DL, Roth MS, Mcgarigle C, Ferrara JL, Antin JH. Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N. Engl. J. Med. 330(2), 100–106 (1994).
    • 197 Bar BM, Schattenberg A, Mensink EJ et al. Donor leukocyte infusions for chronic myeloid leukemia relapsed after allogeneic bone marrow transplantation. J. Clin. Oncol. 11(3), 513–519 (1993).
    • 198 Hertenstein B, Wiesneth M, Novotny J et al. Interferon-alpha and donor buffy coat transfusions for treatment of relapsed chronic myeloid leukemia after allogeneic bone marrow transplantation. Transplantation 56(5), 1114–1118 (1993).
    • 199 Collins RH, Jr, Shpilberg O, Drobyski WR et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol. 15(2), 433–444 (1997).
    • 200 Chalandon Y, Passweg JR, Guglielmi C et al. Early administration of donor lymphocyte infusions upon molecular relapse after allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia: a study by the Chronic Malignancies Working Party of the EBMT. Haematologica 99(9), 1492–1498 (2014).
    • 201 Westwood JA, Kershaw MH. Genetic redirection of T cells for cancer therapy. J. Leukoc. Biol. 87(5), 791–803 (2010).
    • 202 Carretero FJ, Del Campo AB, Flores-Martin JF et al. Frequent HLA class I alterations in human prostate cancer: molecular mechanisms and clinical relevance. Cancer Immunol. Immunother. 65(1), 47–59 (2016).
    • 203 Seliger B, Stoehr R, Handke D et al. Association of HLA class I antigen abnormalities with disease progression and early recurrence in prostate cancer. Cancer Immunol. Immunother. 59(4), 529–540 (2010).
    • 204 Ritz U, Momburg F, Pilch H, Huber C, Maeurer MJ, Seliger B. Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int. J. Oncol. 19(6), 1211–1220 (2001).
    • 205 Meissner M, Reichert TE, Kunkel M et al. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin. Cancer Res. 11(7), 2552–2560 (2005).
    • 206 Ren YX, Yang J, Zhang LJ et al. Downregulation of expression of transporters associated with antigen processing 1 and 2 and human leukocyte antigen I and its effect on immunity in nasopharyngeal carcinoma patients. Mol. Clin. Oncol. 2(1), 51–58 (2014).
    • 207 Gross G, Gorochov G, Waks T, Eshhar Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant. Proc. 21(1 Pt 1), 127–130 (1989).
    • 208 Hombach A, Heuser C, Sircar R et al. T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology 113(4), 1163–1170 (1997).
    • 209 Westwood JA, Smyth MJ, Teng MW et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc. Natl Acad. Sci. USA 102(52), 19051–19056 (2005).
    • 210 Rossig C, Bollard CM, Nuchtern JG, Merchant DA, Brenner MK. Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int. J. Cancer 94(2), 228–236 (2001).
    • 211 Louis CU, Savoldo B, Dotti G et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118(23), 6050–6056 (2011).
    • 212 Abken H, Hombach A, Heuser C, Reinhold U. A novel strategy in the elimination of disseminated melanoma cells: chimeric receptors endow T cells with tumor specificity. Recent Results Cancer Res. 158, 249–264 (2001).
    • 213 Wilkie S, Picco G, Foster J et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J. Immunol. 180(7), 4901–4909 (2008).
    • 214 Chekmasova AA, Rao TD, Nikhamin Y et al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin. Cancer Res. 16(14), 3594–3606 (2010).
    • 215 Hegde M, Corder A, Chow KK et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 21(11), 2087–2101 (2013).
    • 216 Kalos M, Levine BL, Porter DL et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3(95), 95ra73 (2011).
    • 217 Kochenderfer JN, Dudley ME, Kassim SH et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33(6), 540–549 (2015).
    • 218 Cruz CR, Micklethwaite KP, Savoldo B et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a Phase I study. Blood 122(17), 2965–2973 (2013).
    • 219 Kochenderfer JN, Dudley ME, Carpenter RO et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122(25), 4129–4139 (2013).
    • 220 Brudno JN, Somerville RP, Shi V et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. doi:10.1200/JCO.2015.64.5929 (2016) (Epub ahead of print).
    • 221 Ritchie DS, Neeson PJ, Khot A et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol. Ther. 21(11), 2122–2129 (2013).
    • 222 Beatty GL, Haas AR, Maus MV et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2(2), 112–120 (2014).
    • 223 Ahmed N, Brawley VS, Hegde M et al. Human epidermal growth factor receptor 2 (HER2) - specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33(15), 1688–1696 (2015).
    • 224 Miyajima N, Kadowaki Y, Fukushige S et al. Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res. 16(23), 11057–11074 (1988).
    • 225 Warnecke M, Oster H, Revelli JP, Alvarez-Bolado G, Eichele G. Abnormal development of the locus coeruleus in Ear2(Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. Genes Dev. 19(5), 614–625 (2005).
    • 226 Hermann-Kleiter N, Gruber T, Lutz-Nicoladoni C et al. The nuclear orphan receptor NR2F6 suppresses lymphocyte activation and T helper 17-dependent autoimmunity. Immunity 29(2), 205–216 (2008).
    • 227 Niki M, Okada H, Takano H et al. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc. Natl Acad. Sci. USA 94(11), 5697–5702 (1997).
    • 228 Okuda T, Van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84(2), 321–330 (1996).
    • 229 Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103(6), 2316–2324 (2004).
    • 230 Michaud J, Scott HS, Escher R. AML1 interconnected pathways of leukemogenesis. Cancer Invest. 21(1), 105–136 (2003).
    • 231 Ahn MY, Huang G, Bae SC, Wee HJ, Kim WY, Ito Y. Negative regulation of granulocytic differentiation in the myeloid precursor cell line 32Dcl3 by ear-2, a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene, AML1/ETO. Proc. Natl Acad. Sci. USA 95(4), 1812–1817 (1998).
    • 232 Ichim CV, Atkins HL, Iscove NN, Wells RA. Identification of a role for the nuclear receptor EAR-2 in the maintenance of clonogenic status within the leukemia cell hierarchy. Leukemia 25(11), 1687–1696 (2011).
    • 233 Li XB, Jiao S, Sun H et al. The orphan nuclear receptor EAR2 is overexpressed in colorectal cancer and it regulates survivability of colon cancer cells. Cancer Lett. 309(2), 137–144 (2011).
    • 234 Hermann-Kleiter N, Klepsch V, Wallner S et al. The nuclear orphan receptor NR2F6 is a central checkpoint for cancer immune surveillance. Cell. Rep. 12(12), 2072–2085 (2015).
    • 235 Hermann-Kleiter N, Meisel M, Fresser F et al. Nuclear orphan receptor NR2F6 directly antagonizes NFAT and RORgammat binding to the Il17a promoter. J. Autoimmun. 39(4), 428–440 (2012).
    • 236 Wang X, Zhang Y, Yang XO et al. Transcription of Il17 and Il17f is controlled by conserved noncoding sequence 2. Immunity 36(1), 23–31 (2012).
    • 237 Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28(1), 29–39 (2008).
    • 238 Ivanov Ii, Mckenzie BS, Zhou L et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6), 1121–1133 (2006).
    • 239 Klotz L, Burgdorf S, Dani I et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J. Exp. Med. 206(10), 2079–2089 (2009).
    • 240 Giguere V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 8(5), 538–553 (1994).
    • 241 Schrader M, Danielsson C, Wiesenberg I, Carlberg C. Identification of natural monomeric response elements of the nuclear receptor RZR/ROR. They also bind COUP-TF homodimers. J. Biol. Chem. 271(33), 19732–19736 (1996).
    • 242 Regen BioPharma, Inc. Submits IND Application to FDA on tCellVax, a Checkpoint Inhibitor for Cancer Therapy. www.prnewswire.com/news-releases/regen-biopharma-inc-submits-ind-application-to-fda-on-tcellvax-a-checkpoint-inhibitor-for-cancer-therapy-573200261.html