We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cancer vaccines for hepatocellular carcinoma: future directions

    Franco M Buonaguro

    Lab of Molecular Biology & Viral Oncology, Department Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Pascale’ – IRCCS, Naples, Italy

    &
    Luigi Buonaguro

    *Author for correspondence:

    E-mail Address: l.buonaguro@istitutotumori.na.it

    Lab of Molecular Biology & Viral Oncology, Department Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Pascale’ – IRCCS, Naples, Italy

    Published Online:https://doi.org/10.2217/imt-2015-0018
    Free first page

    References

    • 1 Villanueva A, Hernandez-Gea V, Llovet JM. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat. Rev. Gastroenterol. Hepatol. 10(1), 34–42 (2013).
    • 2 Chan SL, Mok T, Ma BB. Management of hepatocellular carcinoma: beyond sorafenib. Curr. Oncol. Rep. 14(3), 257–266 (2012).
    • 3 Greten TF, Wang XW, Korangy F. Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut 64(5), 842–848 (2015).
    • 4 Buonaguro L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM. Challenges in cancer vaccine development for hepatocellular carcinoma. J. Hepatol. 59(4), 897–903 (2013).
    • 5 den Brok MH, Sutmuller RP, van der Voort R et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 64(11), 4024–4029 (2004).
    • 6 Jansen MC, van HR, Schoots IG et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery 147(5), 686–695 (2010).
    • 7 Maiti R. Metronomic chemotherapy. J. Pharmacol. Pharmacother. 5(3), 186–192 (2014).
    • 8 Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin. Oncol. 39(3), 323–339 (2012).
    • 9 Ge Y, Domschke C, Stoiber N et al. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol. Immunother. 61(3), 353–362 (2012).
    • 10 Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11(18), 6713–6721 (2005).
    • 11 Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2), 205–214 (2015).
    • 12 Bertino G, Demma S, Ardiri A et al. The immune system in hepatocellular carcinoma and potential new immunotherapeutic strategies. Biomed. Res. Int. 731469 (2015).
    • 13 El Ansary M, Mogawer S, Elhamid SA et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J. Cancer Res. Clin. Oncol. 139(1), 39–48 (2013).
    • 14 Singh-Jasuja H, Emmerich NP, Rammensee HG. The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother. 53(3), 187–195 (2004).
    • 15 Heidenreich R, Jasny E, Kowalczyk A et al. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int. J. Cancer 137, 372–384 (2015).
    • 16 Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 348(6230), 69–74 (2015).
    • 17 Castle JC, Kreiter S, Diekmann J et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72(5), 1081–1091 (2012).
    • 18 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 339(6127), 1546–1558 (2013).
    • 19 Greten TF, Forner A, Korangy F et al. A Phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 10, 209 (2010).
    • 20 Sawada Y, Yoshikawa T, Shimomura M, Iwama T, Endo I, Nakatsura T. Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int. J. Oncol. 46(1), 28–36 (2015).