We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
EditorialFree Access

Recent challenges in understanding Henipavirus immunopathogenesis: role of nonstructural viral proteins

    François Enchéry

    International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 69365 Lyon, France

    &
    Branka Horvat

    *Author for correspondence:

    E-mail Address: branka.horvat@inserm.fr

    International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 69365 Lyon, France

    Published Online:https://doi.org/10.2217/fvl.14.37
    Free first page

    References

    • 1 Eaton BT, Broder CC, Middleton D, Wang L-F. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol. 4(1), 23–35 (2006).
    • 2 Luby SP, Gurley ES, Hossain MJ. Transmission of human infection with Nipah virus. Clin. Infect. Dis. 49(11), 1743–1748 (2009).
    • 3 Drexler JF, Corman VM, Müller MA et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 3, 796 (2012).
    • 4 Harcourt BH, Tamin A, Ksiazek TG et al. Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271(2), 334–349 (2000).
    • 5 Lo MK, Harcourt BH, Mungall BA et al. Determination of the Henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells. J. Gen. Virol. 90(2), 398–404 (2009).
    • 6 Marsh GA, de Jong C, Barr JA et al. Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog. 8(8), e1002836 (2012).
    • 7 Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 86(6), 2900–2910 (2012).
    • 8 Childs K, Stock N, Ross C et al. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359(1), 190–200 (2007).
    • 9 Childs KS, Andrejeva J, Randall RE, Goodbourn S. Mechanism of mda-5 inhibition by paramyxovirus V proteins. J. Virol. 83(3), 1465–1473 (2009).
    • 10 Childs K, Randall R, Goodbourn S. Paramyxovirus V proteins interact with the RNA helicase LGP2 to inhibit RIG-I-dependent interferon induction. J. Virol. 86(7), 3411–3421 (2012).
    • 11 Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF. Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and Toll-like receptor 3-triggered signaling pathways. J. Virol. 79(10), 6078–6088 (2005).
    • 12 Yamaguchi M, Kitagawa Y, Zhou M, Itoh M, Gotoh B. An anti-interferon activity shared by paramyxovirus C proteins: inhibition of Toll-like receptor 7/9-dependent alpha interferon induction. FEBS Lett. 588(1), 28–34 (2014).
    • 13 Wilson EB, Brooks DG. Decoding the complexity of type I interferon to treat persistent viral infections. Trends Microbiol. 21(12), 634–640 (2013).
    • 14 Shaw ML, García-Sastre A, Palese P, Basler CF. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J. Virol. 78(11), 5633–5641 (2004).
    • 15 Ciancanelli MJ, Volchkova VA, Shaw ML, Volchkov VE, Basler CF. Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. J. Virol. 83(16), 7828–7841 (2009).
    • 16 Yoneda M, Guillaume V, Sato H et al. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLoS ONE 5(9), e12709 (2010).
    • 17 Virtue ER, Marsh GA, Wang L-F. Interferon signaling remains functional during Henipavirus infection of human cell lines. J. Virol. 85(8), 4031–4034 (2011).
    • 18 Mathieu C, Guillaume V, Volchkova VA et al. Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence. J. Virol. 86(19), 10766–10775 (2012).
    • 19 Lo MK, Miller D, Aljofan M et al. Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 404(1), 78–88 (2010).
    • 20 Lo MK, Peeples ME, Bellini WJ, Nichol ST, Rota PA, Spiropoulou CF. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response. PLoS ONE 7(10), e47790 (2012).
    • 21 Dhondt KP, Mathieu C, Chalons M et al. Type I interferon signaling protects mice from lethal Henipavirus infection. J. Infect. Dis. 207(1), 142–151 (2013).
    • 22 Virtue ER, Marsh GA, Baker ML, Wang L-F. Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines. PLoS ONE 6(7), e22488 (2011).
    • 23 Wu Z, Yang L, Yang F et al. Novel Henipa-like virus, Mojiang Paramyxovirus, in rats, China, 2012Emerg. Infect. Dis. 20(6), 1064–1066 (2014).