We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

HIV-1 integration into chromatin: new insights and future perspectives

    Paul Lesbats

    Laboratoire MCMP, UMR 5234 CNRS-Université de Bordeaux Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux cedex, France

    ,
    Marc Lavigne

    Institut Pasteur, UMR 3015 CNRS, 25 rue du Dr Roux, 75724 Paris cedex 15, France

    Laboratoire Joliot-Curie, USR3010, ENS de Lyon, 46, allée d’Italie 69364, Lyon, France

    &
    Published Online:https://doi.org/10.2217/fvl.11.84

    Human AIDS, owing to HIV-1, remains a major health issue despite the numerous antiviral compounds that are now available. One of the main obstacles for these antiviral strategies is the appearance of highly resistant viral strains, making the search for new antiviral targets a crucial issue. The insertion of the viral genome into the cell chromosomal DNA, catalyzed by the retroviral integrase enzyme, is required for stable infection and thus constitutes a suitable target for the antiretroviral molecules currently used in therapy. The precise mechanism of interaction between the integration complex (intasome) and the target chromatin remains poorly understood, thus restricting the development of new therapeutic strategies and original methods to control gene transfer in gene therapy. In this article, we summarize the data obtained in this field and underline recent results highlighting this process and paving the way for new and more detailed understanding of this mechanism.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Bowerman B, Brown PO, Bishop JM, Varmus HE. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev.3(4),469–478 (1989).
    • Miller MD, Farnet CM, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol.71(7),5382–5390 (1997).
    • Pauza CD. Two bases are deleted from the termini of HIV-1 linear DNA during integrative recombination. Virology179(2),886–889 (1990).
    • Engelman A, Mizuuchi K, Craigie R. HIV-1 DNA integration: mechanism of viral DNA cleavage and strand transfer. Cell67,1211–1221 (1991).
    • Bushman FD, Craigie R. Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc. Natl Acad. Sci. USA88(4),1339–1343 (1991).
    • Sherman PA, Fyfe JA. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc. Natl Acad. Sci. USA87(13),5119–5123 (1990).
    • Hindmarsh P, Leis J. Retroviral DNA integration. Microbiol. Mol. Biol. Rev.63(4),836–843; table of contents (1999).▪ First report of an in vitro retroviral concerted-integration system.
    • Sinha S, Grandgenett DP. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells. J. Virol.79(13),8208–8216 (2005).
    • Sinha S, Pursley MH, Grandgenett DP. Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors. J. Virol.76(7),3105–3113 (2002).
    • 10  Lesbats P, Metifiot M, Calmels C et al.In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state. Nucleic Acids Res.36(22),7043–7058 (2008).
    • 11  Faure A, Calmels C, Desjobert C et al. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res.33(3),977–986 (2005).
    • 12  Guiot E, Carayon K, Delelis O et al. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J. Biol. Chem.281(32),22707–22719 (2006).
    • 13  Li M, Mizuuchi M, Burke TR Jr, Craigie R. Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J.25(6),1295–1304 (2006).▪ Biochemical isolation of the intermediates involved in the HIV-1 concerted integration reaction.
    • 14  Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature464(7286),232–236 (2010).▪▪ First 3D structure of a full-length retroviral integrase (IN) protein.
    • 15  Maertens GN, Hare S, Cherepanov P. The mechanism of retroviral integration from x-ray structures of its key intermediates. Nature468(7321),326–329 (2010).▪▪ Structural depiction of the retroviral integration reaction.
    • 16  Van Maele B, Busschots K, Vandekerckhove L, Christ F, Debyser Z. Cellular co-factors of HIV-1 integration. Trends Biochem. Sci.31(2),98–105 (2006).
    • 17  Cereseto A, Manganaro L, Gutierrez Mi et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J.24(17),3070–3081 (2005).
    • 18  Zamborlini A, Coiffic A, Beauclair G et al. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J. Biol. Chem.286(23),21013–21022 (2011).
    • 19  Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J.22(8),1868–1877 (2003).
    • 20  Jordan A, Defechereux P, Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J.20(7),1726–1738 (2001).
    • 21  Lewinski MK, Bisgrove D, Shinn P et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol.79(11),6610–6619 (2005).
    • 22  Dieudonne M, Maiuri P, Biancotto C et al. Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J.28(15),2231–2243 (2009).
    • 23  Han Y, Lassen K, Monie D et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol.78(12),6122–6133 (2004).
    • 24  Marcello A, Dhir S, Dieudonne M. Nuclear positional control of HIV transcription in 4D. Nucleus1(1),8–11 (2010).
    • 25  Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med.348(3),255–256 (2003).
    • 26  Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302(5644),415–419 (2003).
    • 27  Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell110(4),521–529 (2002).
    • 28  Mitchell RS, Beitzel BF, Schroder AR et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol.2(8),E234 (2004).
    • 29  Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science300(5626),1749–1751 (2003).
    • 30  Trobridge GD, Miller DG, Jacobs MA et al. Foamy virus vector integration sites in normal human cells. Proc. Natl Acad. Sci. USA103(5),1498–1503 (2006).
    • 31  Desfarges S, Ciuffi A. Retroviral integration site selection. Viruses2(1),111–130 (2010).
    • 32  Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome. Res.17(8),1186–1194 (2007).▪▪ First genome-wide analysis of the HIV-1 integration loci.
    • 33  The ENCODE (ENCyclopedia Of DNA Elements) Project. Science306(5696),636–640 (2004).
    • 34  Santoni FA, Hartley O, Luban J. Deciphering the code for retroviral integration target site selection. PLoS. Comput. Biol.6(11),E1001008 (2010).
    • 35  Cattoglio C, Maruggi G, Bartholomae C et al. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion. PLoS One5(12),E15688 (2010).
    • 36  Cattoglio C, Pellin D, Rizzi E et al. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood116(25),5507–5517 (2010).
    • 37  Lewinski MK, Yamashita M, Emerman M et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog.2(6),E60 (2006).
    • 38  Cherepanov P, Maertens G, Proost P et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem.278(1),372–381. (2003).▪ First report of the association between LEDGF/p75 and HIV-1 IN.
    • 39  Kalpana GV, Marmon S, Wang W, Crabtree GR, Goff SP. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science266(5193),2002–2006 (1994).▪ First report of the interaction between IN interactor 1 and HIV IN.
    • 40  Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc. Natl Acad. Sci. USA102(48),17308–17313 (2005).
    • 41  Cherepanov P, Devroe E, Silver PA, Engelman A. Identification of an evolutionarily-conserved domain in LEDGF/p75 that binds HIV-1 integrase. J. Biol. Chem.279(47),48883–48892 (2004).
    • 42  Vanegas M, Llano M, Delgado S, Thompson D, Peretz M, Poeschla E. Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. J. Cell. Sci.118(Pt 8),1733–1743 (2005).
    • 43  Ganapathy V, Daniels T, Casiano CA. LEDGF/p75: a novel nuclear autoantigen at the crossroads of cell survival and apoptosis. Autoimmu. Rev.2(5),290–297 (2003).
    • 44  Ge H, Si Y, Roeder RG. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J.17(22),6723–6729 (1998).
    • 45  Turlure F, Maertens G, Rahman S, Cherepanov P, Engelman A. A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res.34(5),1653–1665 (2006).
    • 46  Maertens G, Cherepanov P, Pluymers W et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J. Biol. Chem.278(35),33528–33539 (2003).
    • 47  Emiliani S, Mousnier A, Busschots K et al. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem.280(27),25517–25523 (2005).
    • 48  Llano M, Saenz DT, Meehan A et al. An essential role for LEDGF/p75 in HIV integration. Science314(5798),461–464 (2006).
    • 49  Shun MC, Raghavendra NK, Vandegraaff N et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev.21(14),1767–1778 (2007).
    • 50  Ciuffi A, Llano M, Poeschla E et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med.11(12),1287–1289 (2005).
    • 51  De Rijck J, Bartholomeeusen K, Ceulemans H, Debyser Z, Gijsbers R. High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res.38(18),6135–6147 (2010).
    • 52  Botbol Y, Raghavendra NK, Rahman S, Engelman A, Lavigne M. Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro. Nucleic Acids Res.36(4),1237–1246 (2008).
    • 53  Shun MC, Botbol Y, Li X et al. Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J. Virol.82(23),11555–11567 (2008).
    • 54  Llano M, Vanegas M, Hutchins N, Thompson D, Delgado S, Poeschla EM. Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J. Mol. Biol.360(4),760–773 (2006).
    • 55  Astiazaran P, Bueno MT, Morales E, Kugelman JR, Garcia-Rivera JA, Llano M. HIV-1 integrase modulates the interaction of the HIV-1 cellular cofactor LEDGF/p75 with chromatin. Retrovirology8,27 (2011).
    • 56  Meehan AM, Saenz DT, Morrison JH et al. LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors. PLoS Pathog.5(7),E1000522 (2009).
    • 57  Gijsbers R, Ronen K, Vets S et al. LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol. Ther.18(3),552–560 (2010).
    • 58  Engelman A, Cherepanov P: The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog.4(3),E1000046 (2008).
    • 59  Albanese A, Arosio D, Terreni M, Cereseto A. HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS One3(6),E2413 (2008).
    • 60  Ocwieja KE, Brady TL, Ronen K et al. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog.7(3),E1001313 (2011).
    • 61  Michel F, Crucifix C, Granger F et al. Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J.28(7),980–991 (2009).
    • 62  Pandey KK, Sinha S, Grandgenett DP: Transcriptional coactivator LEDGF/p75 modulates human immunodeficiency virus type 1 integrase-mediated concerted integration. J. Virol.81(8),3969–3979 (2007).
    • 63  Christ F, Thys W, De Rijck J et al. Transportin-SR2 imports HIV into the nucleus. Curr. Biol.18(16),1192–1202 (2008).
    • 64  Matreyek KA, Engelman A. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J. Virol.85(15),7818–7827 (2011).
    • 65  Muller HP, Varmus HE. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J.13(19),4704–4714 (1994).
    • 66  Pruss D, Bushman FD, Wolffe AP. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl Acad. Sci. USA91(13),5913–5917 (1994).
    • 67  Pruss D, Reeves R, Bushman FD, Wolffe AP. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J. Biol. Chem.269(40),25031–25041 (1994).
    • 68  Pryciak MP, Varmus EH. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell69,769–780 (1992).
    • 69  Pryciak PM, Sil A, Varmus HE. Retroviral integration into minichromosomes in vitro. EMBO J.11(1),291–303 (1992).
    • 70  Taganov KD, Cuesta I, Daniel R et al. Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J. Virol.78(11),5848–5855 (2004).
    • 71  Lesbats P, Botbol Y, Chevereau G et al. Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS Pathog.7(2),E1001280 (2011).▪ First in vitro model allowing us to monitor the concerted integration into polynucleosomal templates. First report indicating that some chromatin structures can be refractory to HIV-1 integration.
    • 72  Milani P, Chevereau G, Vaillant C et al. Nucleosome positioning by genomic excluding-energy barriers. Proc. Natl Acad. Sci. USA106(52),22257–22262 (2009).
    • 73  Vaillant C, Audit B, Arneodo A. Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys. Rev. Lett.99(21),218103 (2007).
    • 74  Silvers RM, Smith JA, Schowalter M et al. Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum. Gene Ther.21(3),337–349 (2010).
    • 75  Gijsbers R, Ronen K, Vets S et al. LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol. Ther.18(3),552–560 (2010).
    • 76  Ferris AL, Wu X, Hughes CM et al. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc. Natl Acad. Sci. USA DOI: 10.1073/pnas.0914142107 (2010) (Epub ahead of print).