We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy

    Deirdre P Cronin-Fenton

    * Author for correspondence

    Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark.

    ,
    Per Damkier

    Department of Clinical Chemistry & Pharmacology, Odense University Hospital, Denmark

    &
    Timothy L Lash

    Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark

    Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA

    Published Online:https://doi.org/10.2217/fon.13.168

    ABSTRACT: Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review tamoxifen’s clinical pharmacology and use meta-analyses to evaluate the clinical epidemiology studies conducted to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Our findings indicate that the effect of both drug-induced and/or gene-induced inhibition of CYP2D6 activity is likely to be null or small, or at most moderate in subjects carrying two reduced function alleles. Future research should examine the effect of polymorphisms in genes encoding enzymes in tamoxifen’s complete metabolic pathway, should comprehensively evaluate other biomarkers that affect tamoxifen effectiveness, such as the transport enzymes, and focus on subgroups of patients, such as premenopausal breast cancer patients, for whom tamoxifen is the only guideline endocrine therapy.

    Papers of special note have been highlighted as: • of considerable interest

    References

    • Jordan VC. Tamoxifen: catalyst for the change to targeted therapy. Eur. J. Cancer44(1),30–38 (2008).
    • Osborne CK. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med.339(22),1609–1618 (1998).
    • Burstein HJ, Prestrud AA, Seidenfeld J et al. American society of clinical oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Clin. Oncol.28(23),3784–3796 (2010).
    • Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Thresholds for therapies: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2009. Ann. Oncol.20(8),1319–1329 (2009).•• Guidelines for clinical practice recommend tamoxifen for premenopausal women whose breast tumors express the ER, and some postmenopausal women. CYP2D6 genetic testing is not recommended in routine clinical practice.
    • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Davies C, Godwin J, Gray J et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet378(9793),771–784 (2011).
    • Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet365(9472),1687–1717 (2005).
    • Jordan VC, Collins MM, Rowsby L, Prestwich G. A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J. Endocrinol.75(2),305–316 (1977).
    • Lien EA, Solheim E, Kvinnsland S, Ueland PM. Identification of 4-hydroxy-N-desmethyltamoxifen as a metabolite of tamoxifen in human bile. Cancer Res.48(8),2304–2308 (1988).
    • Adam HK, Douglas EJ, Kemp JV. The metabolism of tamoxifen in human. Biochem. Pharmacol.28(1),145–147 (1979).
    • 10  Stearns V, Johnson MD, Rae JM et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J. Natl Cancer Inst.95(23),1758–1764 (2003).
    • 11  Coller JK, Krebsfaenger N, Klein K et al. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br. J. Clin. Pharmacol.54(2),157–167 (2002).
    • 12  Lim YC, Desta Z, Flockhart DA, Skaar TC. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother. Pharmacol.55(5),471–478 (2005).
    • 13  Lazarus P, Blevins-Primeau AS, Zheng Y, Sun D. Potential role of UGT pharmacogenetics in cancer treatment and prevention: focus on tamoxifen. Ann. NY Acad. Sci.1155,99–111 (2009).
    • 14  Ahern TP, Christensen M, Cronin-Fenton DP et al. Functional polymorphisms in UDP-glucuronosyl transferases and recurrence in tamoxifen-treated breast cancer survivors. Cancer Epidemiol. Biomarkers Prev.20(9),1937–1943 (2011).
    • 15  Gjerde J, Hauglid M, Breilid H et al. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann. Oncol.19(1),56–61 (2008).•• Polymorphisms in genes encoding enzymes that metabolize tamoxifen affect the concentration of tamoxifen’s metabolites.
    • 16  International Transporter Consortium; Giacomini KM, Huang SM, Tweedie DJ et al. Membrane transporters in drug development. Nat. Rev. Drug Discov.9(3),215–236 (2010).
    • 17  Lai Y, Varma M, Feng B et al. Impact of drug transporter pharmacogenomics on pharmacokinetic and pharmacodynamic variability – considerations for drug development. Expert Opin. Drug Metab. Toxicol.8(6),723–743 (2012).
    • 18  Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol.204(3),216–237 (2005).
    • 19  Reed K, Parissenti AM. The effect of ABCB1 genetic variants on chemotherapy response in HIV and cancer treatment. Pharmacogenomics12(10),1465–1483 (2011).
    • 20  Amiri-Kordestani L, Basseville A, Kurdziel K, Fojo AT, Bates SE. Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist. Updat.15(1–2),50–61 (2012).
    • 21  Clarke R, Leonessa F, Trock B. Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin. Oncol.32(6 Suppl. 7),S9–S15 (2005).
    • 22  Teft WA, Mansell SE, Kim RB. Endoxifen, the active metabolite of tamoxifen, is a substrate of the efflux transporter P-glycoprotein (multidrug resistance 1). Drug Metab. Dispos.39(3),558–562 (2011).•• Highlights that tamoxifen is a substrate of P-glycoprotein.
    • 23  Iusuf D, Teunissen SF, Wagenaar E, Rosing H, Beijnen JH, Schinkel AH. P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen and restricts their brain penetration. J. Pharmacol. Exp. Ther.337(3),710–717 (2011).
    • 24  Biglia N, Torta R, Roagna R et al. Evaluation of low-dose venlafaxine hydrochloride for the therapy of hot flushes in breast cancer survivors. Maturitas52(1),78–85 (2005).
    • 25  Henry NL, Rae JM, Li L et al. Association between CYP2D6 genotype and tamoxifen-induced hot flashes in a prospective cohort. Breast Cancer Res. Treat.117(3),571–575 (2009).
    • 26  Demissie S, Silliman RA, Lash TL. Adjuvant tamoxifen: predictors of use, side effects, and discontinuation in older women. J. Clin. Oncol.19(2),322–328 (2001).
    • 27  Baum M, Budzar AU, Cuzick J et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet359(9324),2131–2139 (2002).
    • 28  Deitcher SR, Gomes MP. The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: a systematic review. Cancer101(3),439–449 (2004).
    • 29  Fisher B, Costantino JP, Wickerham DL et al. Tamoxifen for the prevention of breast cancer: Current status of the national surgical adjuvant breast and bowel project P-1 study. J. Natl Cancer Inst.97(22),1652–1662 (2005).
    • 30  Swerdlow AJ, Jones ME. Tamoxifen treatment for breast cancer and risk of endometrial cancer: a case–control study. J. Natl Cancer Inst.97(5),375–384 (2005).
    • 31  Crewe HK, Ellis SW, Lennard MS, Tucker GT. Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol.53(2),171–178 (1997).
    • 32  Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br. J. Clin. Pharmacol.34(3),262–265 (1992).
    • 33  Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur. J. Clin. Pharmacol.51(1),73–78 (1996).
    • 34  Jin Y, Desta Z, Stearns V et al.CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl Cancer Inst.97(1),30–39 (2005).•• Selective serotonin reuptake inhibitors and polymorphisms in genes encoding enzymes that metabolize tamoxifen affect the serum concentration of tamoxifen’s metabolites.
    • 35  Cronin-Fenton D, Lash TL, Sorensen HT. Selective serotonin reuptake inhibitors and adjuvant tamoxifen therapy: risk of breast cancer recurrence and mortality. Future Oncol.6(6),877–880 (2010).
    • 36  Sideras K, Ingle JN, Ames MM et al. Coprescription of tamoxifen and medications that inhibit CYP2D6. J. Clin. Oncol.28(16),2768–2776 (2010).
    • 37  Borges S, Desta Z, Jin Y et al. Composite functional genetic and comedication CYP2D6 activity score in predicting tamoxifen drug exposure among breast cancer patients. J. Clin. Pharmacol.50(4),450–458 (2010).
    • 38  Borges S, Desta Z, Li L et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin. Pharmacol. Ther.80(1),61–74 (2006).
    • 39  Ahern TP, Pedersen L, Cronin-Fenton DP, Sorensen HT, Lash TL. No increase in breast cancer recurrence with concurrent use of tamoxifen and some CYP2D6-inhibiting medications. Cancer Epidemiol. Biomarkers Prev.18(9),2562–2564 (2009).
    • 40  Lash TL, Cronin-Fenton D, Ahern TP et al. Breast cancer recurrence risk related to concurrent use of SSRI antidepressants and tamoxifen. Acta Oncol.49(3),305–312 (2010).
    • 41  Lash TL, Pedersen L, Cronin-Fenton D et al. Tamoxifen’s protection against breast cancer recurrence is not reduced by concurrent use of the SSRI citalopram. Br. J. Cancer99(4),616–621 (2008).
    • 42  Lash TL, Cronin-Fenton D, Ahern TP et al. CYP2D6 inhibition and breast cancer recurrence in a population-based study in Denmark. J. Natl Cancer Inst.103(6),489–500 (2011).
    • 43  Kelly CM, Juurlink DN, Gomes T et al. Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study. BMJ340,c693 (2010).
    • 44  Morrow PK, Serna R, Broglio K et al. Effect of CYP2D6 polymorphisms on breast cancer recurrence. Cancer118(5),1221–1227 (2012).
    • 45  Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res.9(1),R7 (2007).
    • 46  Wegman P, Vainikka L, Stal O et al. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res.7(3),R284–R290 (2005).
    • 47  Okishiro M, Taguchi T, Jin KS, Shimazu K, Tamaki Y, Noguchi S. Genetic polymorphisms of CYP2D6*10 and CYP2C19*2,*3 are not associated with prognosis, endometrial thickness, or bone mineral density in japanese breast cancer patients treated with adjuvant tamoxifen. Cancer115(5),952–961 (2009).
    • 48  Oesterreich S, Hilsenbeck SH, Skaar T et al. Correlations between genetic variants in CYP2D6 and UGT2B7 and survival in breast cancer patients treated with or without tamoxifen: results from a large cohort study. Presented at: San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 8–12 December 2010.
    • 49  Nowell SA, Ahn J, Rae JM et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res. Treat.91(3),249–258 (2005).
    • 50  Regan MM, Leyland-Jones B, Bouzyk M et al.CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J. Natl Cancer Inst.104(6),441–451 (2012).
    • 51  Abraham JE, Maranian MJ, Driver KE et al.CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res.12(4),R64 (2010).
    • 52  Gor PP, Su HI, Gray RJ et al. Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res.12(3),R26 (2010).
    • 53  Rae JM, Drury S, Hayes DF et al.CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J. Natl Cancer Inst.104(6),452–460 (2012).
    • 54  Park HS, Choi JY, Lee MJ et al. Association between genetic polymorphisms of CYP2D6 and outcomes in breast cancer patients with tamoxifen treatment. J. Korean Med. Sci.26(8),1007–1013 (2011).
    • 55  Stingl JC, Parmar S, Huber-Wechselberger A et al. Impact of CYP2D6*4 genotype on progression free survival in tamoxifen breast cancer treatment. Curr. Med. Res. Opin.26(11),2535–2542 (2010).
    • 56  Schroth W, Goetz MP, Hamann U et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA302(13),1429–1436 (2009).
    • 57  Goetz MP, Suman VJ, Hoskin TL et al. CYP2D6 metabolism and patient outcome in the Austrian Breast and Colorectal Cancer Study Group trial (ABCSG) 8. Clin. Cancer Res.19(2),500–507 (2013).
    • 58  Sirachainan E, Jaruhathai S, Trachu N et al.CYP2D6 polymorphisms influence the efficacy of adjuvant tamoxifen in Thai breast cancer patients. Pharmgenomics Pers. Med.5,149–153 (2012).
    • 59  Thompson AM, Johnson A, Quinlan P et al. Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy. Breast Cancer Res. Treat.125(1),279–287 (2011).
    • 60  Newman WG, Hadfield KD, Latif A et al. Impaired tamoxifen metabolism reduces survival in familial breast cancer patients. Clin. Cancer Res.14(18),5913–5918 (2008).
    • 61  Bijl MJ, van Schaik RH, Lammers LA et al. The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res. Treat.118(1),125–130 (2009).
    • 62  Ramón y Cajal YC, Altes A, Pare L et al. Impact of CYP2D6 polymorphisms in tamoxifen adjuvant breast cancer treatment. Breast Cancer Res. Treat.119(1),33–38 (2010).
    • 63  Sukasem C, Sirachainan E, Chamnanphon M et al. Impact of CYP2D6 polymorphisms on tamoxifen responses of women with breast cancer: a microarray-based study in Thailand. Asian Pac. J. Cancer Prev.13(9),4549–4553 (2012).
    • 64  Xu Y, Sun Y, Yao L et al. Association between CYP2D6 *10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann. Oncol.19(8),1423–1429 (2008).
    • 65  Teh LK, Mohamed NI, Salleh MZ et al. The risk of recurrence in breast cancer patients treated with tamoxifen: polymorphisms of CYP2D6 and ABCB1. AAPS J.14(1),52–59 (2012).
    • 66  Kiyotani K, Mushiroda T, Imamura CK et al. Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J. Clin. Oncol.28(8),1287–1293 (2010).
    • 67  Schroth W, Antoniadou L, Fritz P et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J. Clin. Oncol.25(33),5187–5193 (2007).
    • 68  Kiyotani K, Mushiroda T, Sasa M et al. Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer Sci.99(5),995–999 (2008).
    • 69  Goetz MP, Knox SK, Suman VJ et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res. Treat.101(1),113–121 (2007).
    • 70  Schroth W, Hamann U, Fasching PA et al. CYP2D6 polymorphisms as predictors of outcome in breast cancer patients treated with tamoxifen: expanded polymorphism coverage improves risk stratification. Clin. Cancer Res.16(17),4468–4477 (2010).•• Comprehensive genotyping of the CYP2D6 gene increases the strength of the association between reduced function CYP2D6 and breast cancer recurrence.
    • 71  Toyama T, Yamashita H, Sugiura H, Kondo N, Iwase H, Fujii Y. No association between CYP2D6*10 genotype and survival of node-negative Japanese breast cancer patients receiving adjuvant tamoxifen treatment. Jpn J. Clin. Oncol.39(10),651–656 (2009).
    • 72  Kim H, Shin HC, Yom CK et al. Lack of significant association between CYP2D6 polymorphisms and clinical outcomes of adjuvant tamoxifen therapy. Presented at: San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 8–12 December 2010.
    • 73  Lash TL. Association between CYP2D6 polymorphisms and breast cancer outcomes. JAMA303(6),516 (2010).
    • 74  Damodaran SE, Pradhan SC, Umamaheswaran G, Kadambari D, Reddy KS, Adithan C. Genetic polymorphisms of CYP2D6 increase the risk for recurrence of breast cancer in patients receiving tamoxifen as an adjuvant therapy. Cancer Chemother. Pharmacol.70(1),75–81 (2012).
    • 75  Chubak J, Buist DS, Boudreau DM, Rossing MA, Lumley T, Weiss NS. Breast cancer recurrence risk in relation to antidepressant use after diagnosis. Breast Cancer Res. Treat.112(1),123–132 (2008).
    • 76  Azoulay L, Dell’aniello S, Huiart L, du Fort GG, Suissa S. Concurrent use of tamoxifen with CYP2D6 inhibitors and the risk of breast cancer recurrence. Breast Cancer Res. Treat.126(3),695–703 (2011).
    • 77  Rothman KJ, Greenland S, Lash TL. Validity in epidemiologic studies. In: Modern Epidemiology. Rothman KJ, Greenland S, Lash TL (Eds). Lippincott Williams and Wilkins, PA, USA, 115–134 (2008).
    • 78  Aubert RE, Stanek EJ, Yao J et al. Risk of breast cancer recurrence in women initiating tamoxifen with CYP2D6 inhibitors. J. Clin. Oncol.27,18S (2009).
    • 79  Dusetzina SB, Alexander GC, Freedman RA, Huskamp HA, Keating NL. Trends in co-prescribing of antidepressants and tamoxifen among women with breast cancer, 2004–2010. Breast Cancer Res. Treat.137(1),285–296 (2013).
    • 80  Binkhorst L, Mathijssen RH, van Herk-Sukel MP et al. Unjustified prescribing of CYP2D6 inhibiting SSRIs in women treated with tamoxifen. Breast Cancer Res. Treat.139(3),923–929 (2013).
    • 81  Stanton V Jr. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J. Natl Cancer Inst.104(16),1265–1266; author reply 1266–1268 (2012).
    • 82  Kelly CM, Pritchard KI. CYP2D6 genotype as a marker for benefit of adjuvant tamoxifen in postmenopausal women: lessons learned. J. Natl Cancer Inst.104(6),427–428 (2012).
    • 83  Pharoah PD, Abraham J, Caldas C. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial and Re: CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J. Natl Cancer Inst.104(16),1263–1264; author reply 1266–1268 (2012).
    • 84  Nakamura Y, Ratain MJ, Cox NJ, McLeod HL, Kroetz DL, Flockhart DA. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J. Natl Cancer Inst.104(16),1264; author reply 1266–1268 (2012).
    • 85  Ellsworth RE, Ellsworth DL, Lubert SM, Hooke J, Somiari RI, Shriver CD. High-throughput loss of heterozygosity mapping in 26 commonly deleted regions in breast cancer. Cancer Epidemiol. Biomarkers Prev.12(9),915–919 (2003).
    • 86  Hirano A, Emi M, Tsuneizumi M et al. Allelic losses of loci at 3p25.1, 8p22, 13q12, 17p13.3, and 22q13 correlate with postoperative recurrence in breast cancer. Clin. Cancer Res.7(4),876–882 (2001).
    • 87  Benetkiewicz M, Piotrowski A, Diaz De Stahl T et al. Chromosome 22 array-CGH profiling of breast cancer delimited minimal common regions of genomic imbalances and revealed frequent intra-tumoral genetic heterogeneity. Int. J. Oncol.29(4),935–945 (2006).
    • 88  Rodriguez S, Gaunt TR, Day IN. Hardy–Weinberg equilibrium testing of biological ascertainment for mendelian randomization studies. Am. J. Epidemiol.169(4),505–514 (2009).
    • 89  Salanti G, Amountza G, Ntzani EE, Ioannidis JP. Hardy–Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur. J. Hum. Genet.13(7),840–848 (2005).
    • 90  Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy–Weinberg equilibrium on postulated gene-disease associations. Am. J. Epidemiol.163(4),300–309 (2006).
    • 91  Ahern TP, Christensen M, Cronin-Fenton D et al. Concordance of metabolic enzyme genotypes assayed from paraffin-embedded, formalin-fixed breast tumors and normal lymphatic tissue. Clin. Epidemiol.2,241–246 (2010).
    • 92  Rae JM, Cordero KE, Scheys JO, Lippman ME, Flockhart DA, Johnson MD. Genotyping for polymorphic drug metabolizing enzymes from paraffin-embedded and immunohistochemically stained tumor samples. Pharmacogenetics13(8),501–507 (2003).
    • 93  Lash TL, Lien EA, Sorensen HT, Hamilton-Dutoit S. Genotype-guided tamoxifen therapy: time to pause for reflection? Lancet Oncol.10(8),825–833 (2009).•• Gene–drug and drug–drug interactions affect the concentration profile of tamoxifen’s metabolites but these changes may have little clinical impact on tamoxifen’s effectiveness. The clinical epidemiology to date is widely heterogeneous, without adequate explanation, and with an average association near the null.
    • 94  Lash TL, Ahern TP, Cronin-Fenton D, Garne JP, Hamilton-Dutoit S, Sorensen HT. Comment on ‘impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy’. Cancer Sci.99(8),1706–1707 (2008).
    • 95  Dunn BK, Greene MH, Kelley JM et al. Novel pathway analysis of genomic polymorphism-cancer risk interaction in the breast cancer prevention trial. Int. J. Mol. Epidemiol. Genet.1(4),332–349 (2010).•• Analysis of the complete tamoxifen metabolic pathway will give insights into the association between tamoxifen metabolism and breast cancer outcomes.
    • 96  Lash TL, Ahern TP. Bias analysis to guide new data collection. Int. J. Biostat. doi:10.2202/1557,4679.1345 (2012) (Epub ahead of print).
    • 97  Jordan VC. Metabolites of tamoxifen in animals and man: identification, pharmacology, and significance. Breast Cancer Res. Treat.2(2),123–138 (1982).
    • 98  Baurley JW, Conti DV, Gauderman WJ, Thomas DC. Discovery of complex pathways from observational data. Stat. Med.29(19),1998–2011 (2010).
    • 99  Jordan VC, Dowse LJ. Tamoxifen as an anti-tumour agent: effect on oestrogen binding. J. Endocrinol.68(02),297–303 (1976).
    • 100  Johnson MD, Zuo H, Lee KH et al. Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res. Treat.85(2),151–159 (2004).
    • 101  Sherman BM, Chapler FK, Crickard K, Wycoff D. Endocrine consequences of continuous antiestrogen therapy with tamoxifen in premenopausal women. J. Clin. Invest.64(2),398–404 (1979).
    • 102  Saladores P, Schroth W, Eccles D, Tapper W, Gerty S, Brauch H. CYP2D6 polymorphisms are not associated with tamoxifen outcome in premenopausal women with ER positive breast cancer of the POSH cohort. Am. Assoc. Cancer Res.72(8 Suppl. 1),2671 (2012).
    • 103  American Cancer Society. Breast Cancer Facts and Figures 2009–2010. American Cancer Society, Inc., Atlanta, GA, USA (2009).
    • 104  Surowiak P, Materna V, Matkowski R et al. Relationship between the expression of cyclooxygenase 2 and MDR1/P-glycoprotein in invasive breast cancers and their prognostic significance. Breast Cancer Res.7(5),R862–R870 (2005).
    • 105  Filipits M, Pohl G, Rudas M et al. Clinical role of multidrug resistance protein 1 expression in chemotherapy resistance in early-stage breast cancer: the Austrian Breast and Colorectal Cancer Study Group. J. Clin. Oncol.23(6),1161–1168 (2005).
    • 106  Lash TL, Cole SR. Immortal person-time in studies of cancer outcomes. J. Clin. Oncol.27(23),e55–e56 (2009).
    • 107  Sai K, Saito Y, Itoda M et al. Genetic variations and haplotypes of ABCC2 encoding MRP2 in a Japanese population. Drug Metab. Pharmacokinet.23(2),139–147 (2008).
    • 108  Choi HK, Yang JW, Roh SH, Han CY, Kang KW. Induction of multidrug resistance associated protein 2 in tamoxifen-resistant breast cancer cells. Endocr. Relat. Cancer14(2),293–303 (2007).
    • 109  Siegelmann-Danieli N, Kurnik D, Lomnicky Y et al. Potent CYP2D6 inhibiting drugs do not increase relapse rate in early breast cancer patients treated with adjuvant tamoxifen. Breast Cancer Res. Treat.125(2),505–510 (2011).
    • 110  Dezentjé VO, van Blijderveen NJ, Gelderblom H et al. Effect of concomitant CYP2D6 inhibitor use and tamoxifen adherence on breast cancer recurrence in early-stage breast cancer. J. Clin. Oncol.28(14),2423–2429 (2010).
    • 111  Lehmann D, Nelsen J, Ramanath V, Newman N, Duggan D, Smith A. Lack of attenuation in the antitumor effect of tamoxifen by chronic CYP isoform inhibition. J. Clin. Pharmacol.44(8),861–865 (2004).
    • 201  The Human Cytochrome P450 (CYP) Allele Nomenclature Database. www.cypalleles.ki.se
    • 202  National Cancer Institure. Tamoxifen citrate in treating patients with metastatic or recurrent breast cancer. www.cancer.gov/clinicaltrials/search/view?cdrid=672523&version=healthprofessional
    • 203  NCCN practice guidelines in oncology, breast cancer – v.2.2011. Invasive breast cancer, adjuvant endocrine therapy (2010). www.nccn.org