We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Impact of stress on cancer metastasis

    Myrthala Moreno-Smith

    Department of Gynecologic Oncology, UTMD Anderson Cancer Center, 1155, Herman Pressler, Unit 1362, Houston, TX 77030, USA

    ,
    Susan K Lutgendorf

    Department of Psychology, University of Iowa, IA, USA

    Department of Obstetrics & Gynecology, University of Iowa, IA, USA

    Department of Urology, University of Iowa, IA, USA

    The Holden Comprehensive Cancer Center, University of Iowa, IA, USA

    &
    Anil K Sood

    † Author for correspondence

    Department of Cancer Biology, UTMD Anderson Cancer Center, TX, USA.

    Published Online:https://doi.org/10.2217/fon.10.142

    The influence of psychosocial factors on the development and progression of cancer has been a longstanding hypothesis since ancient times. In fact, epidemiological and clinical studies over the past 30 years have provided strong evidence for links between chronic stress, depression and social isolation and cancer progression. By contrast, there is only limited evidence for the role of these behavioral factors in cancer initiation. Recent cellular and molecular studies have identified specific signaling pathways that impact cancer growth and metastasis. This article provides an overview of the relationship between psychosocial factors, specifically chronic stress, and cancer progression.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Fidler IJ: The role of organ microenvironment in the biology and therapy of cancer metastasis. J. Cell. Biochem.101,927–936 (2007).
    • Fidler IJ: The organ microenvironment and cancer metastasis. Differentiation70(9–10),498–505 (2002).
    • Spiegel D, Giese-Davis J: Depression and cancer: mechanisms and disease progression. Biol. Psychiatry54(3),269–282 (2003).
    • Bukberg J, Penman D, Holland JC: Depression in hospitalized cancer patients. Psychosom. Med.46,199–212 (1984).
    • Spiegel D: Health caring: psychosocial support for patients with cancer. Cancer74(4),1453–1457 (1994).
    • Chida Y, Hamer M, Wardle J et al.: Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat. Clin. Pract. Oncol.5(8),466–475 (2008).▪▪ Provides an overview of the clinical studies addressing the impact of stress factors on cancer.
    • Duijts SF, Zeegers MP, Borne BV: The association between stressful life events and breast cancer risk: a meta-analysis. Int. J. Cancer107(6),1023–1029 (2003).
    • Lillberg K, Verkasalo P, Kaprio J et al.: Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am. J. Epidemiol.157(5),415–423 (2003).
    • Geyer S: Life events prior to manifestation of breast cancer: a limited prospective study covering eight years before diagnosis. J. Psychosom. Res.35(2–3),355–363 (1991).
    • 10  Michael YL, Carlson NE, Chlebowski RT et al.: Influence of stressors on breast cancer incidence in the Women’s Health Initiative. Health Physiol.28,137–146 (2009).
    • 11  Steel JL GD, Gamblin TC, Olek MC, Carr BI: Depression, immunity, and survival in patients with hepatobiliary carcinoma. J. Clin. Oncol.25,2397–2405 (2007).
    • 12  Satin JR, Linden W, Phillips MJ: Depression as a predictor of disease progression and mortality in cancer patients: a meta-analysis. Cancer22,5349–5361 (2009).
    • 13  Everson SA, Goldberg DE, Kaplan GA et al.: Hopelessness and risk of mortality and incidence of myocardial infarction and cancer. Psychosom. Med.58(2),113–121 (1996).
    • 14  Stommel M, Given BA, Given CW: Depression and functional status as predictors of death among cancer patients. Cancer94(10),2719–2727 (2002).
    • 15  Watson M, Haviland JS, Greer S et al.: Influence of psychological response on survival in breast cancer: a population-based cohort study. Lancet354(9187),1331–1336 (1999).
    • 16  Buccheri G: Depressive reactions to lung cancer are common and often followed by a poor outcome. Eur. Respir. J.11(1),173–178 (1998).
    • 17  Cohen S, Willis TA: Stress, social support, and the buffering hypothesis. Psychol. Bull.98,310–357 (1985).
    • 18  Funch DP, Marshall J: The role of stress, social support and age in survival from breast cancer. J. Psychosom. Res.27,77–83 (1983).
    • 19  Marshall JR, Funch DP: Social environment and breast cancer. A cohort analysis of patient survival. Cancer52(8),1546–1550 (1983).
    • 20  Maunsell E, Brisson J, Deschenes L: Social support and survival among women with breast cancer. Cancer76(4),631–637 (1995).
    • 21  Giraldi T, Rodani MG, Cartei G et al.: Psychosocial factors and breast cancer: a 6-year Italian follow-up study. Psychother. Psychosom.66(5),229–236 (1997).
    • 22  Butow PN, Hiller JE, Price MA et al.: Epidemiological evidence for a relationship between life events, coping style, and personality factors in the development of breast cancer. J. Psychosom. Res.49(3),169–181 (2000).
    • 23  Kroenke CH, Kubzansky LD, Schernhammer ES et al.: Social networks, social support, and survival after breast cancer diagnosis. J. Clin. Oncol.24(7),1105–1111 (2006).
    • 24  Sapolsky RM: Why Zebras Don’t Get Ulcers: A Guide to Stress, Stress-Related Diseases, and Coping. WH Freeman and Co., NY, USA (1998).
    • 25  Chrousos G: Stress and disorders of the stress system. Nat. Rev. Endocrinol.5,374–381 (2009).
    • 26  McEwen B: Stress and health: relevance to persian gulf veterans? Presented at: International Society for Traumatic Stress Studies Annual Meeting 1998. Washington, DC, USA, 21–23 November 1998.
    • 27  Schmidt C, Kraft K: β-endorphin and catecholamine concentrations during chronic and acute stress in intensive care patients. Eur. J. Med. Res.1(11),528–532 (1996).
    • 28  Rupp H, Dhalla KS, Dhalla NS: Mechanisms of cardiac cell damage due to catecholamines: significance of drugs regulating central sympathetic outflow. J. Cardiovasc. Pharmacol.24(Suppl. 1),S16–S24 (1994).
    • 29  Rupp H, Jacob R: Excess catecholamines and the metabolic syndrome: should central imidazoline receptors be a therapeutic target? Med. Hypotheses44(3),217–225 (1995).
    • 30  Puglisi-Allegra S, Imperato A, Angelucci L et al.: Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res.554(1–2),217–222 (1991).
    • 31  Imperato A, Angelucci L, Casolini P et al.: Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res.577(2),194–199 (1992).
    • 32  Seeman TE, Berkman LF, Blazer D et al.: Social ties and support and neuroendocrine function: the McArthur studies of successful aging. Ann. Behav. Med.16(95–106), (1994).
    • 33  Seeman TE, McEwen BS: Impact of social environment characteristics on neuroendocrine regulation. Psychosom. Med.58(5),459–471 (1996).
    • 34  Seeman TE SB, Rowe JW, Horwitz RI, McEwen B: Price of adaptation-allostatic load and its health consequences. Arch. Intern. Med.157,2259–2268 (1997).
    • 35  Kiecolt-Glaser JK BC, Glaser R, Malarkey WB: Love, marriage, and divorce: newlyweds’ stress hormones foreshadow relationship changes. J. Consult. Clin. Psychol.71,176–188 (2003).
    • 36  Tyrka AR, Wier L, Price LH et al.: Childhood parental loss and adult hypothalamic–pituitary–adrenal function. Biol. Psychiatry63,1147–1154 (2008).
    • 37  Bevans K, Cerbone A, Overstreet S: Relations between recurrent trauma exposure and recent life stress and salivary cortisol among children. Develop. Psychopathol.20,257–272 (2008).
    • 38  Hughes J, Watkins L, Blumenthal JA et al.: Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. J. Psychosom. Res.57,353–358 (2004).
    • 39  Grossman F, Potter WZ: Catecholamines in depression: a cumulative study of urinary norepinephrine and its major metabolites in unipolar and bipolar depressed patients versus healthy volunteers at the NIMH. Psychiatry Res.87,21–27 (1999).
    • 40  Lake C, Pickar D, Ziegler MG et al.: High plasma norepinephrine levels in patients with major affective disorder. Am. J. Psychiatry139,1315–1318 (1982).
    • 41  McEwen B: Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev.87,873–904 (2007).
    • 42  Ebner K RN, Saria A, Singewald N: Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc. Natl Acad. Sci. USA101,4280–4285 (2004).
    • 43  Lakshmanan J: Nerve growth factor levels in mouse serum: variations due to stress. Neurochem. Res.12,393–397 (1987).
    • 44  Lara HE, Porcile A, Espinoza J et al.: Release of norepinephrine from human ovary: coupling to steroidogenic response. Endocrine15(2),187–192 (2001).
    • 45  Greenwald G, Roy S: Follicular development and its control. In: The Physiology of Reproduction. Knobil E, Neill J (Eds). Raven Press, NY, USA, 629–724 (1994).
    • 46  Nankova B, Kvetnansky R, Hiremagalur B et al.: Immobilization stress elevates gene expression for catecholamine biosynthetic enzymes and some neuropeptides in rat sympathetic ganglia: effects of adrenocorticotropin and glucocorticoids. Endocrinology137(12),5597–5604 (1996).
    • 47  Paredes A, Galvez A, Leyton V et al.: Stress promotes development of ovarian cysts in rats: the possible role of sympathetic nerve activation. Endocrine8(3),309–315 (1998).
    • 48  Lara HE, Dorfman M, Venegas M et al.: Changes in sympathetic nerve activity of the mammalian ovary during a normal estrous cycle and in polycystic ovary syndrome: studies on norepinephrine release. Microsc. Res. Tech.59(6),495–502 (2002).
    • 49  Maestroni GJ: Neurohormones and catecholamines as functional components of the bone marrow microenvironment. Ann. NY Acad. Sci.917,29–37 (2000).
    • 50  Kobilka B: Adrenergic receptors as models for G protein-coupled receptor. Annu. Rev. Neurosci.15,87–114 (1992).
    • 51  Pullar CE, Isseroff RR: The β-2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms. J. Cell Sci.119(Pt 3),592–602 (2006).
    • 52  Lai LP Mitchell J: β2-adrenergic receptors expressed on murine chondrocytes stimulate cellular growth and inhibit the expression of Indian hedgehog and collagen type X. J. Cell Biochem.104,545–553 (2008).
    • 53  Bylund D, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW: Pharmacological characteristics of α 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol. Pharmacol.42,1–5 (1992).
    • 54  Fernando M, Heaney AP: α1-adrenergic receptor antagonists: novel therapy for pituitary adenomas. Mol. Endocrinol.19(12),3085–3096 (2005).
    • 55  Badino GR, Novelli A, Girardi C et al.: Evidence for functional β-adrenoceptor subtypes in CG-5 breast cancer cell. Pharmacol. Res.33(4–5),255–260 (1996).
    • 56  Lutgendorf SK, Cole S, Costanzo E et al.: Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin. Cancer Res.9(12),4514–4521 (2003).
    • 57  McDonald PH, Lefkowitz RJ: β-arrestins: new roles in regulating heptahelical receptors functions. Cell Signal13(10),683–689 (2001).
    • 58  Dixon RA, Kobilka BK, Strader DJ et al.: Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature321(6065),75–79 (1986).
    • 59  Emorine LJ, Marullo S, Briend-Sutren MM et al.: Molecular characterization of the human β-3-adrenergic receptor. Science245(4922),1118–1121 (1989).
    • 60  Frielle T, Collins S, Daniel KW et al.: Cloning of the cDNA for the human β 1-adrenergic receptor. Proc. Natl Acad. Sci. USA84(22),7920–7924 (1987).
    • 61  Thaker PH, Han LY, Kamat AA et al.: Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med.12(8),939–944 (2006).▪▪ First study to demonstrate the impact of stress hormones on cancer angiogenesis.
    • 62  Rhen T Cidlowski J: Anti-inflammatory action of glucocorticoids – new mechanisms for old drugs. N. Engl. J. Med.353(16),1711 (2005).
    • 63  Newton R: Molecular mechanisms of glucocorticoid action: what is important? Thorax55(7),603–613 (2000).
    • 64  Pazirandeh A , Xue Y, Prestegaard T et al.: Effects of altered glucocorticoid sensitivity in the T cell lineage on thymocyte and T cell homeostasis. FASEB J.16(7),727–729 (2002).
    • 65  Chrousos GP, Gold PW: The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA267(9),1244–1252 (1992).
    • 66  Sapolsky RM, Romero LM, Munck AU: How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev.21(1),55–89 (2000).
    • 67  Antoni MH, Cruess S, Cruess DG et al.: Cognitive–behavioral stress management reduces distress and 24-hour urinary free cortisol output among symptomatic HIV-infected gay men. Ann. Behav. Med.22(1),29–37 (2000).
    • 68  Sephton S, Spiegel D: Circadian disruption in cancer: a neuroendocrine–immune pathway from stress to disease? Brain Behav. Immun.17(5),321–328 (2003).
    • 69  Sephton SE, Sapolsky RM, Kraemer HC et al.: Diurnal cortisol rhythm as a predictor of breast cancer survival. J. Natl Cancer Inst.92(12),994–1000 (2000).▪ Important clinical study addressing the role of cortisol in breast cancer patients.
    • 70  Schernhammer ES, Laden F, Speizer FE et al.: Night-shift work and risk of colorectal cancer in the nurses’ health study. J. Natl Cancer Inst.95(11),825–828 (2003).
    • 71  Kawamura A, Tamaki N, Kokunai T: Effect of dexamethasone on cell proliferation of neuroepithelial tumor cell lines. Neurol. Med. Chir. (Tokyo)38(10),633–638; discussion 638–640 (1998).
    • 72  Nakane T, Szentendrei T, Stern L et al.: Effects of IL-1 and cortisol on β-adrenergic receptors, cell proliferation, and differentiation in cultured human A549 lung tumor cells. J. Immunol.145(1),260–266 (1990).
    • 73  Sheridan JF, Feng NG, Bonneau RH et al.: Restraint stress differentially affects anti-viral cellular and humoral immune responses in mice. J. Neuroimmunol.31(3),245–255 (1991).
    • 74  Padgett DA, Marucha PT, Sheridan JF: Restraint stress slows cutaneous wound healing in mice. Brain Behav. Immun.12(1),64–73 (1998).
    • 75  Padgett DA, Sheridan JF, Dorne J et al.: Social stress and the reactivation of latent herpes simplex virus type 1. Proc. Natl Acad. Sci. USA95(12),7231–7235 (1998).
    • 76  Iwakabe K, Shimada M, Ohta A et al.: The restraint stress drives a shift in Th1/Th2 balance toward Th2-dominant immunity in mice. Immunol. Lett.62(1),39–43 (1998).
    • 77  Fiserova A, Starec M, Kuldova M et al.: Effects of D2-dopamine and α-adrenoceptor antagonists in stress induced changes on immune responsiveness of mice. J. Neuroimmunol.130(1–2),55–65 (2002).
    • 78  Nukina H, Sudo N, Aiba Y et al.: Restraint stress elevates the plasma interleukin-6 levels in germ-free mice. J. Neuroimmunol.115(1–2),46–52 (2001).
    • 79  Zhou D, Kusnecov AW, Shurin MR et al.: Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic–pituitary–adrenal axis. Endocrinology133(6),2523–2530 (1993).
    • 80  Zorzet S, Perissin L, Rapozzi V et al.: Restraint stress reduces the antitumor efficacy of cyclophosphamide in tumor-bearing mice. Brain Behav. Immun.12(1),23–33 (1998).
    • 81  Steplewski Z, Vogel WH, Ehya H et al.: Effects of restraint stress on inoculated tumor growth and immune response in rats. Cancer Res.45(10),5128–5133 (1985).
    • 82  Cao L, Filipov NM, Lawrence DA: Sympathetic nervous system plays a major role in acute cold/restraint stress inhibition of host resistance to Listeria monocytogenes. J. Neuroimmunol.125(1–2),94–102 (2002).
    • 83  Steplewski Z, Goldman PR, Vogel WH: Effect of housing stress on the formation and development of tumors in rats. Cancer Lett.34(3),257–261 (1987).
    • 84  Tjurmina OA, Armando I, Saavedra JM et al.: Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology143(12),4520–4526 (2002).
    • 85  Kvetnansky R, Fukuhara K, Pacak K et al.: Endogenous glucocorticoids restrain catecholamine synthesis and release at rest and during immobilization stress in rats. Endocrinology133(3),1411–1419 (1993).
    • 86  Ghoshal K, Wang Y, Sheridan JF, Jacob ST: Metallothionein induction in response to restraint stress. Transcriptional control, adaptation to stress, and role of glucocorticoid. J. Biol. Chem.273,27904–27910 (1998).
    • 87  Ben-Eliyahu S, Yirmiya R, Liebeskind JC, Taylor AN, Gale RP: Stress increases metastatic spread of a mammary tumor in rats: evidence for mediation by the immune system. Brain Behav. Immun.5(2),193–205 (1991).
    • 88  Ben-Eliyahu S, Page GG, Yirmiya R et al.: Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int. J. Cancer.80(6),880–888 (1999).
    • 89  Page GG, Ben-Eliyahu S: A role for NK-cells in greater susceptibility of young rats to metastatic formation. Develop. Comp. Immunol.23(1),87–96 (1999).
    • 90  Page GG, Ben-Eliyahu S, Yirmiya R et al.: Morphine attenuates surgery-induced enhancement of metastatic colonization in rats. Pain54(1),21–28 (1993).
    • 91  Ben-Eliyahu S, Shakhar G, Rosenne E et al.: Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: a role for adrenergic mechanisms. Anesthesiology91(3),732–740 (1999).
    • 92  Hermes GL, Delgado B, Tretiakova M et al.: Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc. Natl Acad. Sci. USA106(52),22393–22398 (2009).
    • 93  Hermes GL, Rosenthal L, Montag A, McClintock MK: Social isolation and the inflammatory response: sex differences in the enduring effects of a prior stressor. Am. J. Physiol. Regul. Integr. Comp. Physiol.290(2),R273–R282 (2006).
    • 94  Sharp J, Zammit T, Azar T, Lawson D: Stress-like responses to common procedures in individually and group-housed female rats. Contemp. Top. Lab. Anim. Sci.42,9–18 (2003).
    • 95  Fisher ER, Fisher B: Recent observations on concepts of metastasis. Arch. Pathol.83(4),321–324 (1967).
    • 96  Folkman J: How is blood vessel growth regulated in normal and neoplastic tissue? – G.H.A. Clowes Memorial Award Lecture. Cancer Res.46(2),467–473 (1986).
    • 97  Liotta LA: Tumor invasion and metastases-role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res.46(1),1–7 (1986).
    • 98  Fidler IJ: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer3(6),453–458 (2003).▪ Important review of the metastatic process.
    • 99  Folkman J: Toward an understanding of angiogenesis: search and discovery. Perspect. Biol. Med.29(1),10–36 (1985).
    • 100  Langley RR, Fidler IJ: Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev.28(3),297–321 (2007).
    • 101  Senger DR, Galli SJ, Dvorak AM et al.: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science219(4587),983–985 (1983).
    • 102  Spannuth WA, Sood AK, Coleman RL: Angiogenesis as a strategic target for ovarian cancer therapy. Nat. Clin. Pract. Oncol.5(4),194–204 (2008).
    • 103  Ferrara N: Vascular endothelial growth factor. Eur. J. Cancer32A(14),2413–2422 (1996).
    • 104  Ferrara N, Davis-Smyth T: The biology of vascular endothelial growth factor. Endocr. Rev.18(1),4–25 (1997).
    • 105  Fredriksson JM, Lindquist JM, Bronnikov GE et al.: Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a β-adrenoreceptor/cAMP/protein kinase-A pathway involving Src but independently of ERK1/2. J. Biol. Chem.275(18),13802–13811 (2000).
    • 106  Yang E, Donovan EL, Benson DM, Glaser R: VEGF is differentially regulated in multiple myeloma-derived cell lines by norepinephrine. Brain Behav. Immun.22,318–322 (2008).
    • 107  Lutgendorf SK, Johnsen EL, Cooper B et al.: Vascular endothelial growth factor and social support in patients with ovarian carcinoma. Cancer95(4),808–815 (2002).
    • 108  Lutgendorf SK, Lamkin DM, Jennings NB et al.: Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma. Clin. Cancer Res.14,6839–6846. (2008).
    • 109  Sharma A, Greenman J, Sharp DM, Walker LG, Monson JR: Vascular endothelial factor and psychosocial factors in colorectal cancer. Psychooncology17(1),66–73 (2008).
    • 110  Costanzo ES, Lutgendorf SK, Sood AK, Anderson B, Sorosky J, Lubaroff DM: Psychosocial factors and interleukin-6 among women with advanced ovarian cancer. Cancer104,305–313 (2005).
    • 111  Van Snick J: Interleukin-6: an overview. Annu. Rev. Immunol.8,253–278 (1990).
    • 112  Obata NH, Tamakoshi K, Shibata K et al.: Effects of interleukin-6 on in vitro cell attachment, migration and invasion of human ovarian carcinoma. Anticancer Res.17(1A),337–342 (1997).
    • 113  Wu S, Rodabaugh K, Martinez-Maza O et al.: Stimulation of ovarian tumor cell proliferation with monocyte products including interleukin-1, interleukin-6, and tumor necrosis factor-α. Am. J. Obstet. Gynecol.166(3),997–1007 (1992).
    • 114  Nilsson MB, Langley RR, Fidler IJ: Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res.65(23),10794–10800 (2005).
    • 115  Nilsson MB, Armaiz-Pena G, Takahashi R et al.: Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J. Biol. Chem.282(41),29919–29926 (2007).
    • 116  Yang EV, Sood AK, Chen M et al.: Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res.66(21),10357–10364 (2006).
    • 117  Landen CN, Lin YG, Armaiz Pena GN et al.: Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res.67(21),10389–10396 (2007).
    • 118  Machein MR, Kullmer J, Ronicke V et al.: Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol. Appl. Neurobiol.25(2),104–112 (1999).
    • 119  Fidler IJ: Critical factors in the biology of human cancer metastasis: twenty-eighth GHA Clowes Memorial Award Lecture. Cancer Res.50(19),6130–6138 (1990).
    • 120  Flaxman BA, Harper RA: In vitro analysis of the control of keratinocyte proliferation in human epidermis by physiologic and pharmacologic agents. J. Invest. Dermatol.65(1),52–59 (1975).
    • 121  Vandewalle B, Revillion F, Lefebvre J: Functional β-adrenergic receptors in breast cancer cells. J. Cancer Res. Clin. Oncol.116(3),303–306 (1990).
    • 122  Marchetti B, Spinola PG, Pelletier G et al.: A potential role for catecholamines in the development and progression of carcinogen-induced mammary tumors: hormonal control of β-adrenergic receptors and correlation with tumor growth. J. Steroid Biochem. Mol. Biol.38(3),307–320 (1991).
    • 123  Abramovitch R, Tavor E, Jaco Hirsch J et al.: A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res.64(4),1338–1346 (2004).
    • 124  Lang K, Drell TL 4th, Lindecke A et al.: Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer112(2),231–238 (2004).
    • 125  Jean D, Bar-Eli M: Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Mol. Cell. Biochem.212(1–2),19–28 (2000).
    • 126  Scarparo AC, Sumida D, Patrao MT et al.: Catecholamine effects on human melanoma cells evoked by α1-adrenoceptors. Arch. Dermatol. Res.296(3),112–119 (2004).
    • 127  Pifl C, Zezula J, Spittler A et al.: Antiproliferative action of dopamine and norepinephrine in neuroblastoma cells expressing the human dopamine transporter. FASEB J.15(9),1607–1609 (2001).
    • 128  Cox ME, Deeble PD, Lakhani S et al.: Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res.59(15),3821–3830 (1999).
    • 129  Cohen RJ, Glezerson G, Haffejee Z: Neuroendocrine cells – a new prognostic parameter in prostate cancer. Br. J. Urol.68(3),258–262 (1991).
    • 130  Theodorescu D, Broder SR, Boyd JC et al.: Cathepsin D and chromogranin A as predictors of long term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer80(11),2109–2119 (1997).
    • 131  diSant’Agnese PA: Neuroendocrine differentiation in human prostatic carcinoma. Hum. Pathol.23(3),287–296 (1992).
    • 132  Zhao XY, Malloy PJ, Krishnan AV et al.: Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med.6(6),703–706 (2000).
    • 133  Simon WE, Albrecht M, Trams G et al.: In vitro growth promotion of human mammary carcinoma cells by steroid hormones, tamoxifen, and prolactin. J. Natl Cancer Inst.73(2),313–321 (1984).
    • 134  Boudreau N, Bissell MJ: Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell. Biol.10(5),640–646 (1998).
    • 135  Biology of the Extracellular Matrix (2nd edition). Hay ED (Ed.). Plenum Press, NY, USA (1991).
    • 136  Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell69(1),11–25 (1992).
    • 137  Mercurio AM, Rabinovitz I: Towards a mechanistic understanding of tumor invasion – lessons from the α6β-4 integrin. Semin. Cancer Biol.11(2),129–141 (2001).
    • 138  Kawasaki H, Springett GM, Mochizuki N et al.: A family of cAMP-binding proteins that directly activate Rap1. Science282(5397),2275–2279 (1998).
    • 139  de Rooij J, Zwartkruis FJ, Verheijen MH et al.: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature396(6710),474–477 (1998).
    • 140  Rangarajan S, Enserink JM, Kuiperij HB et al.: Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the β2-adrenergic receptor. J. Cell Biol.160(4),487–493 (2003).
    • 141  Enserink JM, Price LS, Methi T et al.: The cAMP–Epac–Rap1 pathway regulates cell spreading and cell adhesion to laminin-5 through the α3β1 integrin but not the α6β4 integrin. J. Biol. Chem.279(43),44889–44896 (2004).
    • 142  Yang EV, Bane CM, MacCallum RC et al.: Stress-related modulation of matrix metalloproteinase expression. J. Neuroimmunol.133(1–2),144–150 (2002).
    • 143  Wu W, Yamaura T, Murakami K et al.: Involvement of TNF-α in enhancement of invasion and metastasis of colon 26-L5 carcinoma cells in mice by social isolation stress. Oncol. Res.11(10),461–469 (1999).
    • 144  Entschladen F, Lang K, Drell TL et al.: Neurotransmitters are regulators for the migration of tumor cells and leukocytes. Cancer Immunol. Immunother.51(9),467–482 (2002).
    • 145  Masur K, Niggemann B, Zanker KS et al.: Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by β-blockers. Cancer Res.61(7),2866–2869 (2001).
    • 146  Joseph J, Niggemann B, Zaenker KS et al.: The neurotransmitter γ-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res.62(22),6467–6469 (2002).
    • 147  Sood AK, Bhatty R, Kamat AA et al.: Stress hormone-mediated invasion of ovarian cancer cells. Clin. Cancer Res.12(2),369–375 (2006).
    • 148  Drell T, Joseph J, Lang K et al.: Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res. Treat.80(1),63–70 (2003).
    • 149  Pollard J: Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer4,71–78 (2004).
    • 150  Coussens LM Werb Z: Inflammation and cancer. Nat. Rev. Cancer420,860–867 (2002).
    • 151  Chan AS, Ng LW, Poon LS, Chan WW, Wong YH: Dopaminergic and adrenergic toxicities on SK-N-MC human neuroblastoma cells are mediated through G protein signaling and oxidative stress. Apoptosis12,167–179 (2007).
    • 152  Sastry K: Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J. Biol. Chem.282,14094–14100 (2007).
    • 153  Distelhorst CW: Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ.9(1),6–19 (2002).
    • 154  Herr I, Ucur E, Herzer K et al.: Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res.63(12),3112–3120 (2003).
    • 155  Wu W, Chaudhuri S, Brickley DR et al.: Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res.64(5),1757–1764 (2004).
    • 156  Zhang C, Kolb A, Buchler P et al.: Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer. BMC Cancer6,61(2006).
    • 157  Bekasi S, Zalatnai A: Overexpression of glucocorticoid receptor in human pancreatic cancer and in xenografts. An immunohistochemical study. Pathol. Oncol. Res.15(4),561–566 (2009).
    • 158  Zhang C, Kolb A, Mattern J et al.: Dexamethasone desensitizes hepatocellular and colorectal tumours toward cytotoxic therapy. Cancer Lett.242(1),104–111 (2006).
    • 159  Zhang C, Beckermann B, Kallifatidis G et al.: Corticosteroids induce chemotherapy resistance in the majority of tumour cells from bone, brain, breast, cervix, melanoma and neuroblastoma. Int. J. Oncol.29(5),1295–1301 (2006).
    • 160  Zhang C, Marme A, Wenger T et al.: Glucocorticoid-mediated inhibition of chemotherapy in ovarian carcinomas. Int. J. Oncol.28(2),551–558 (2006).
    • 161  Zhang C, Wenger T, Mattern J et al.: Clinical and mechanistic aspects of glucocorticoid-induced chemotherapy resistance in the majority of solid tumors. Cancer Biol. Ther.6(2),278–287 (2007).
    • 162  Sood AK, Armaiz-Pena GN, Halder J et al.: Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J. Clin. Invest.120(5),1515–1523 (2010).
    • 163  Dave JR, Anderson SM, Saviolakis GA et al.: Chronic sustained stress increases levels of anterior pituitary prolactin mRNA. Pharmacol. Biochem. Behav.67(3),423–431 (2000).
    • 164  Almeida SA, Petenusci SO, Franci JA et al.: Chronic immobilization-induced stress increases plasma testosterone and delays testicular maturation in pubertal rats. Andrologia32(1),7–11 (2000).
    • 165  Young WS 3rd, Lightman SL: Chronic stress elevates enkephalin expression in the rat paraventricular and supraoptic nuclei. Brain Res. Mol. Brain Res.13(1–2),111–117 (1992).
    • 166  Glavin GB, Szabo S: Dopamine in gastrointestinal disease. Dig. Dis. Sci.35(9),1153–1161 (1990).
    • 167  Mezey E, Eisenhofer G, Hansson S et al.: Dopamine produced by the stomach may act as a paracrine/autocrine hormone in the rat. Neuroendocrinology67(5),336–348 (1998).
    • 168  Thaker PH, Sood AK: Neuroendocrine influences on cancer biology. Semin. Cancer Biol.18,164–170 (2007).
    • 169  Basu S, Nagy JA, Pal S et al.: The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med.7(5),569–574 (2001).
    • 170  Teunis MA, Kavelaars A, Voest E et al.: Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J.16(11),1465–1467 (2002).
    • 171  Chakroborty D, Sarkar C, Basu B et al.: Catecholamines regulate tumor angiogenesis. Cancer Res.69(9),3727–3730 (2009).
    • 172  Basu S, Sarkar C, Chakroborty D et al.: Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res.64,5551–5555 (2004).
    • 173  Chakroborty D, Sarkar C, Mitra RB et al.: Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin. Cancer Res.10(13),4349–4356 (2004).
    • 174  Sarkar C, Chakroborty D, Chowdhury UR et al.: Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin. Cancer Res.14(8),2502–2510 (2008).
    • 175  Chakroborty D, Chowdhury UR, Sarkar C et al.: Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J. Clin. Invest.118(4),1380–1389 (2008).
    • 176  Moreno-Smith M, Armaiz-Pena GN, Allen JK et al.: Dopamine blocks stress-mediated tumor growth in ovarian carcinoma. Presented at: 100th Annual Meeting of American Association for Cancer Resesarch. Denver, CL, USA, 18–22 April 2009.
    • 177  Clevenger CV, Furth PA, Hankinson SE et al.: The role of prolactin in mammary carcinoma. Endocr. Rev.24(1),1–27 (2003).
    • 178  Ben-Jonathan N, Liby K, McFarland M et al.: Prolactin as an autocrine/paracrine growth factor in human cancer. Trends Endocrinol. Metab.13(6),245–250 (2002).
    • 179  Vonderhaar BK: Prolactin in human breast cancer development. In: Endocrine Oncology. Stephen PE (Ed.). Humana Press, NJ, USA, 101–120 (2000).
    • 180  Chen WY, Ramamoorthy P, Chen N et al.: A human prolactin antagonist, HPRL-G129R, inhibits breast cancer cell proliferation through induction of apoptosis. Clin. Cancer Res.5(11),3583–3593 (1999).
    • 181  Richert MM, Decker K, Anderson SM: Mechanisms underlying consitutive activation of Akt in breast cancer cell lines. Presented at: 83rd Annual Meeting of the Endocrine Society. Denver, CO, USA, 20–23 June 2001.
    • 182  Maus MV, Reilly SC, Clevenger CV: Prolactin as a chemoattractant for human breast carcinoma. Endocrinology140(11),5447–5450 (1999).
    • 183  Ben-Jonathan N, Hnasko R: Dopamine as a prolactin inhibitor. Endocr. Rev.22(6),724–763 (2001).
    • 184  Grewen KM, Girdler SS, Amico J, Light KC: Effects of partner support on resting oxytocin, cortisol, norepinephrine, and blood pressure before and after warm partner contact. Psychosom. Med.67(4),531–538 (2005).
    • 185  McCarthy MM, McDonald CH, Brooks PJ, Goldman D: An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol. Behav.60(5),1209–1215 (1996).
    • 186  Jezova D, Skultetyova I, Vedhara K et al.: Vasopressin and oxytocin in stress. Ann. NY Acad. Sci.771,192–203 (1995).
    • 187  Pequeux C, Keegan BP, Hagelstein MT et al.: Oxytocin- and vasopressin-induced growth of human small-cell lung cancer is mediated by the mitogen-activated protein kinase pathway. Endocr. Relat. Cancer11(4),871–885 (2004).
    • 188  Cassoni P, Marrocco T, Deaglio S et al.: Biological relevance of oxytocin and oxytocin receptors in cancer cells and primary tumors. Ann. Oncol.12(Suppl. 2),S37–S39 (2001).
    • 189  Taylor AH, Ang VT, Jenkins JS et al.: Interaction of vasopressin and oxytocin with human breast carcinoma cells. Cancer Res.50(24),7882–7886 (1990).
    • 190  Bussolati GC: The oxytocin/oxytocin receptor system – expect the unexpected. Endocrinology142(4),1377–1379 (2001).
    • 191  Reversi A, Cassoni P, Chini B: Oxytocin receptor signaling in myoepithelial and cancer cells. J. Mammary Gland Biol. Neoplasia10(3),221–229 (2006).
    • 192  Péqueux C, Breton C, Hendrick JC et al.: Oxytocin synthesis and oxytocin receptor expression by cell lines of human small cell carcinoma of the lung stimulate tumor growth through autocrine/paracrine signaling. Cancer Res.4623–4629 (2002).
    • 193  Mantyh P: Neurobiology of substance P and the NK1 receptor. J. Clin. Psychiatry63,6–10 (2002).
    • 194  Kramer MS, Cutler N, Feighner J et al.: Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science281,1640–1645 (1998).
    • 195  Ruff M, Schiffmann E, Terranova V et al.: Neuropeptides are chemoattractants for human tumor cells and monocytes: a possible mechanism for metastasis. Clin. Immunol. Immunopathol.37(3),387–396 (1985).
    • 196  Dragos D, Tanasescu MD: The effect of stress on the defense systems. J. Med. Life3(1),10–18 (2010).
    • 197  Dhabhar FS, Saul AN, Daugherty C et al.: Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma. Brain Behav. Immun.24(1),127–137 (2010).
    • 198  Knutson KL Disis ML: Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother.54,721–728 (2005).
    • 199  Webster JI, Tonelli L, Sternberg EM: Neuroendocrine regulation of immunity. Annu. Rev. Immunol.20,125–163 (2002).
    • 200  Calcagni E, Elenkov I: Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann. NY Acad. Sci.1069,62–76 (2006).
    • 201  Kryczek I, Wei S, Zou L et al.: Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J. Immunol.178(11),6730–6733 (2007).
    • 202  Zhang B, Rong R, Wei H et al.: The prevalence of Th17 cells in patients with gastric cancer. Biochem. Biophys. Res. Commun.374(3),533–537 (2008).
    • 203  Curiel TJ: Regulatory T cells and treatment of cancer. Curr. Opin. Immunol.20(2),241–246 (2008).
    • 204  Vedhara K, Cox NK, Wilcock GK et al.: Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet353(9153),627–631 (1999).
    • 205  Kiecolt-Glaser JK, Ricker D, George J et al.: Urinary cortisol levels, cellular immunocompetency, and loneliness in psychiatric inpatients. Psychosom. Med.46(1),15–23 (1984).
    • 206  Aloyz RS, Bamji SX, Pozniak CD et al.: p53 is essential for developmental neuron death as regulated by the TRKA and p75 neurotrophin receptors. J. Cell Biol.143(6),1691–1703 (1998).
    • 207  Elenkov I: Systemic stress-induced Th2 shift and its clinical implications. J. Int. Rev. Neurobiol.52,163–186 (2002).
    • 208  Almog B, Fainaru O, Gamzu R et al.: Placental apoptosis in discordant twins. Placenta23(4),331–336 (2002).
    • 209  Madden KS, Sanders VM, Felten DL: Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu. Rev. Pharmacol. Toxicol.35,417–448 (1995).
    • 210  Brodde OE, Engel G, Hoyer D et al.: The β-adrenergic receptor in human lymphocytes: subclassification by the use of a new radio-ligand ± 125 iodocyanopindolol. Life Sci.29(21),2189–2198 (1981).
    • 211  Fuchs BA, Campbell KS, Munson AE: Norepinephrine and serotonin content of the murine spleen: its relationship to lymphocyte β-adrenergic receptor density and the humoral immune response in vivo and in vitro. Cell Immunol.117(2),339–351 (1988).
    • 212  Landmann R, Bittiger H, Buhler FR: High affinity β-2-adrenergic receptors in mononuclear leucocytes: similar density in young and old normal subjects. Life Sci.29(17),1761–1771 (1981).
    • 213  Loveland BE, Jarrott B, McKenzie IF: The detection of β-adrenoceptors on murine lymphocytes. Int. J. Immunopharmacol.3(1),45–55 (1981).
    • 214  Titinchi S, Clark B: α2-adrenoceptors in human lymphocytes: direct characterisation by [3H]yohimbine binding. Biochem. Biophys. Res. Commun.121(1),1–7 (1984).
    • 215  McPherson GA, Summers RJ: Characterization and localization of 3H-clonidine binding in membranes prepared from guinea-pig spleen. Clin. Exp. Pharmacol. Physiol.9(1),77–87 (1982).
    • 216  Goin JC, Sterin-Borda L, Borda ES et al.: Active α-2 and β-adrenoceptors in lymphocytes from patients with chronic lymphocytic leukemia. Int. J. Cancer49(2),178–181 (1991).
    • 217  Abrass CK, O’Connor SW, Scarpace PJ et al.: Characterization of the β-adrenergic receptor of the rat peritoneal macrophage. J. Immunol.135(2),1338–1341 (1985).
    • 218  Spengler RN, Allen RM, Remick DG et al.: Stimulation of α-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J. Immunol.145(5),1430–1434 (1990).
    • 219  Plaut M: Lymphocyte hormone receptors. Annu. Rev. Immunol.5,621–669 (1987).
    • 220  Yukawa T, Ukena D, Kroegel C et al.: β-2-adrenergic receptors on eosinophils. Binding and functional studies. Am. Rev. Respir. Dis.141(6),1446–1452 (1990).
    • 221  Hadden JW, Hadden EM, Middleton E: Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol.1(6),583–595 (1970).
    • 222  Melmon KL, Bourne HR, Weinstein Y et al.: Hemolytic plaque formation by leukocytes in vitro. Control by vasoactive hormones. J. Clin. Invest.53(1),13–21 (1974).
    • 223  Bourne HR, Lichtenstein LM, Melmon KL et al.: Modulation of inflammation and immunity by cyclic AMP. Science184(132),19–28 (1974).
    • 224  Depelchin A, Letesson JJ: Adrenaline influence on the immune response. I. Accelerating or suppressor effects according to the time of application. Immunol. Lett.3(4),199–205 (1981).
    • 225  Gader AM: The effects of β-adrenergic blockade on the responses of leucocyte counts to intravenous epinephrine in man. Scand. J. Haematol.13(1),11–16 (1974).
    • 226  Crary B, Borysenko M, Sutherland DC et al.: Decrease in mitogen responsiveness of mononuclear cells from peripheral blood after epinephrine administration in humans. J. Immunol.130(2),694–697 (1983).
    • 227  Dunn GP, Bruce AT, Ikeda H et al.: Cancer immunoediting: from immunosurveillance to tumor escape. Immunol. Nat.3,991–998 (2002).
    • 228  Saul AN, Oberyszyn TM, Daugherty C et al.: Chronic stress and susceptibility to skin cancer. J. Natl Cancer Inst.97(23),1760–1767 (2005).
    • 229  Greenfeld K, Avraham R, Benish M et al.: Immune suppression while awaiting surgery and following dissociations between plasma cytokine levels, their induced production, and NK cell cytotoxicity. Brain Behav. Immun.21,503–513 (2007).
    • 230  Kiecolt-Glaser JK, Fisher LD, Ogrocki P, Stout JC, Speicher CE, Glaser R: Marital quality, marital disruption, and immune function. Psychosom. Med.49,13–34 (1987).
    • 231  Zorilla EP, Luborsky L, McKay JR et al.: The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav. Immun.15,199–226 (2001).
    • 232  Irwin M: Psychoneuroimmunology of depression: clinical implications. Brain Behav. Immun.16(1),1–16 (2002).▪ Important review describing the impact of depression on mortality risk and its association with neuroimmune mechanisms.
    • 233  Blomberg BB, Alvarez JP, Diaz A et al.: Psychosocial adaptation and cellular immunity in breast cancer patients in the weeks after surgery: an exploratory study. J. Psychosom. Res.67,369–376 (2009).
    • 234  Andersen BL, Farrar WB, Golden-Kreutz D et al.: Stress and immune responses after surgical treatment for regional breast cancer. J. Natl Cancer Inst.90(1),30–36 (1998).
    • 235  Thornton LM, Andersen BL, Crespin TR, Carson WE: Individual trajectories in stress covary with immunity during recovery from cancer diagnosis and treatments. Brain Behav. Immun.21,185–194 (2007).
    • 236  Thornton LM, Andersen BL, Carson WE 3rd: Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case–control analysis. Cancer Immunol. Immunother.57(10),1471–1481 (2008).
    • 237  Sephton SE, Dhabhar FS, Keuroghlian AS et al.: Depression, cortisol, and suppressed cell-mediated immunity in metastatic breast cancer. Brain Behav. Immun.23(8),1148–1155 (2009).
    • 238  Lutgendorf SK, Sood AK, Anderson B et al.: Social support, psychological distress, and natural killer cell activity in ovarian cancer. J. Clin. Oncol.23(28),7105–7113 (2005).
    • 239  Lutgendorf SK, Lamkin DM, DeGeest K et al.: Depressed and anxious mood and T-cell cytokine producing populations in ovarian cancer patients. Brain Behav. Immun.22,890–900 (2008).
    • 240  Glasner A, Avraham R, Rosenne E et al.: Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a β-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J. Immunol.184(5),2449–2457 (2010).
    • 241  Basu S, Dasgupta PS, Lahiri T et al.: Uptake and biodistribution of dopamine in bone marrow, spleen and lymph nodes of normal and tumor bearing mice. Life Sci.53(5),415–424 (1993).
    • 242  Basu S, Dasgupta PS, Chowdhury JR: Enhanced tumor growth in brain dopamine-depleted mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. J. Neuroimmunol.60(1–2),1–8 (1995).
    • 243  Marttila RJ, Eskola J, Päivärinta M, Rinne UK: Immune functions in Parkinson’s disease. Adv. Neurol.40,315–323 (1984).
    • 244  Marttila RJ, Eskola J, Soppi E, Rinne UK: Immune functions in Parkinson’s disease lymphocyte subsets, concanavalin A-induced suppressor cell activity and in vitro immunoglobulin production. J. Neurol. Sci.69(3),121–131 (1985).
    • 245  Fiszer U, Piotrowska K, Korlak J et al.: The immunological status in Parkinson’s disease. Med. Lab. Sci.48(3),196–200 (1991).
    • 246  Villemain F, Chatenoud L, Galinowski A et al.: Aberrant T cell-mediated immunity in untreated schizophrenic patients: deficient interleukin-2 production. Am. J. Psychiatry146(5),609–616 (1989).
    • 247  Ganguli R, Brar JS, Chengappa KR et al.: Mitogen-stimulated interleukin-2 production in never-medicated, first-episode schizophrenic patients. The influence of age at onset and negative symptoms. Arch. Gen. Psychiatry52(8),668–672 (1995).
    • 248  Maes M, Bosmans E, Calabrese J et al.: Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J. Psychiatr. Res.29(2),141–152 (1995).
    • 249  Mortensen PB: The incidence of cancer in schizophrenic patients. J. Epidemiol. Commun. Health43(1),43–47 (1989).
    • 250  Goldacre M, Kurina L, Wotton C et al.: Schizophrenia and cancer: an epidemiological study. Br. J. Psychiatry187,334–338 (2005).
    • 251  Asada M, Ebihara S, Numachi Y et al.: Reduced tumor growth in a mouse model of schizophrenia lacking the dopamine transporter. Int. J. Cancer123,511–518 (2008).
    • 252  Barak Y, Achiron A, Mandel M et al.: Reduced cancer incidence among patients with schizophrenia. Cancer104(12),2817–2821 (2005).
    • 253  Antoni MH, Lutgendorf SK, Cole SW et al.: The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat. Rev. Cancer6(3),240–248 (2006).
    • 254  Perron L, Bairati I, Harel F et al.: Antihypertensive drug use and the risk of prostate cancer (Canada). Cancer Causes Control15(6),535–541 (2004).
    • 255  Algazi M, Plu-Bureau G, Flahault A et al.: Could treatments with β-blockers be associated with a reduction in cancer risk? Rev. Epidemiol. Sante Publique52(1),53–65 (2004).
    • 256  Li CI, Malone KE, Weiss N et al.: Relation between use of antihypertensive medications and risk of breast carcinoma among women ages 65–79 years. Cancer98(7),1504–1513 (2003).
    • 257  Meier CR, Derby LE, Jick SS et al.: Angiotensin-converting enzyme inhibitors, calcium channel blockers, and breast cancer. Arch. Intern. Med.160(3),349–353 (2000).
    • 258  Rosenberg L, Rao RS, Palmer JR et al.: Calcium channel blockers and the risk of cancer. JAMA279(13),1000–1004 (1998).
    • 259  Cao L, Liu X, Lin EJ et al.: Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell142(1),52–64 (2010).
    • 260  Khong HT, Restifo NP: Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat. Immunol.3,999–1005 (2002).
    • 261  Benish M, Bartal I, Goldfarb Y et al.: Perioperative use of β-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann. Surg. Oncol.15,2042–2052 (2008).