We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fon.09.127

Most of the anticancer chemotherapeutic drugs that are broadly and successfully used today are DNA-damaging agents. Targeting of DNA has been proven to cause relatively potent and selective destruction of tumor cells. However, the clinical potential of DNA-damaging agents is limited by the adverse side effects and increased risk of secondary cancers that are consequences of the agents’ genotoxicity. In this review, we present evidence that those agents capable of targeting DNA without inducing DNA damage would not be limited in these ways, and may be as potent as DNA-damaging agents in the killing of tumor cells. We use as an example literature data and our own research of the well-known antimalarial drug quinacrine, which binds to DNA without inducing DNA damage, yet modulates a number of cellular pathways that impact tumor cell survival.

Bibliography

  • Watson JD, Crick FHC: A Structure for deoxyribose nucleic acid. Nature171,737–738 (1953).
  • Boer DR, Canals A, Coll M: DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Trans. (3),399–414 (2009).
  • Pindur U, Jansen M, Lemster T: Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology. Curr. Med. Chem.12(24),2805–2847 (2005).
  • Strekowski L, Wilson B: Noncovalent interactions with DNA: an overview. Mutat. Res.623(1–2),3–13 (2007).
  • Ferguson LR, Denny WA: Genotoxicity of non-covalent interactions: DNA intercalators. Mutat. Res.623(1–2),14–23 (2007).
  • Snyder RD: Assessment of atypical DNA intercalating agents in biological and in silico systems. Mutat. Res.623(1–2),72–82 (2007).
  • Bielawski K, Bielawska A: Small-molecule based delivery systems for alkylating antineoplastic compounds. ChemMedChem3(4),536–542 (2008).
  • Martinez R, Chacon-Garcia L: The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr. Med. Chem.12(2),127–151 (2005).
  • Antonini I, Polucci P, Magnano A et al.: Design, synthesis, and biological properties of new bis (acridine-4-carboxamides) as anticancer agents. J. Med. Chem.46(14),3109–3115 (2003).
  • 10  Antonini I: DNA-binding antitumor agents: from pyrimido[5,6,1-de]acridines to other intriguing classes of acridine derivatives. Curr. Med. Chem.9(18),1701–1716 (2002).
  • 11  Demeunynck M, Charmantray F, Martelli A: Interest of acridine derivatives in the anticancer chemotherapy. Curr. Pharm. Des.7(17),1703–1724 (2001).
  • 12  Albert A: The Acridines: Their Preparation, Physical, Chemical, and Biological Properties and Uses. St Martin’s Press, NY, USA (1951).
  • 13  Mellanby E: Report on work carried out in the pharmacological laboratory, Sheffield University. Brit. Emp. Cancer C.10,102 (1933).
  • 14  Lasnitzki I, Wilkinson J: The effect of acridine derivatives on growth and mitoses of cells in vitroBr. J. Cancer2,369–375 (1948).
  • 15  Wallace DJ: The use of quinacrine (Atabrine) in rheumatic diseases: a reexamination. Semin. Arthritis Rheum.18(4),282–296 (1989).
  • 16  Young MD, Eyles DE: The efficacy of chloroquine, quinacrine, quinine and totaquine in the treatment of Plasmodium malariae infections (quartan malaria). Am. J. Trop. Med. Hyg.28(1),23–28 (1948).
  • 17  Winckel CW: The efficacy of quinacrine and quinine in the treatment of Plasmodium malariae infections. Doc. Neerl. Indones. Morbis. Trop.1(1),93–96 (1949).
  • 18  Shannon J, Earl D, Brodie B et al.: The pharmacological basis for rational use of atabrine in the treatment of malaria. J. Pharmacol. Exp. Ther.81,307–330 (1944).
  • 19  no.153 OotSGCL. The drug treatment of malaria: suppressive and clinical. JAMA123,205–208 (1943).
  • 20  Goodman L, Gilamn A: The Pharmacological Basis of Therapeutics (2nd Edition). Macmillan, NY, USA (1954).
  • 21  Wolfe MS: The treatment of intestinal protozoan infections. Med. Clin. North. Am.66(3),707–720 (1982).
  • 22  Wolfe MS: Giardiasis. Clin. Microbiol. Rev.5(1),93–100 (1992).
  • 23  Upcroft P, Upcroft JA: Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin. Microbiol. Rev.14(1),150–164 (2001).
  • 24  Page F: Treatment of lupus erythematosus with mepacrine. Lancet2(6687),755–758 (1951).
  • 25  Freedman A, Bach F: Mepacrine and rheumatoid arthritis. Lancet2(6729),321 (1952).
  • 26  Voog R, Chouteau J, Marchal A, Cabanel G: [Asthma therapy with a combination of synthetic antimalarials (83 cases)]. Presse Med.77(53),1995 (1969).
  • 27  Zuehlke RL, Lillis PJ, Tice A: Antimalarial therapy for lupus erythematosus: an apparent advantage of quinacrine. Int. J. Dermatol.20(1),57–61 (1981).
  • 28  Sokol RJ, Lichtenstein PK, Farrell MK: Quinacrine hydrochloride-induced yellow discoloration of the skin in children. Pediatrics69(2),232–233 (1982).
  • 29  Perk D: Mepacrine psychosis. J. Ment. Sci.93(393),756–771 (1947).
  • 30  Sapp OL 3rd: Toxic psychosis due to quinarcrine and chloroquine. JAMA187,373–375 (1964).
  • 31  Lindenmayer JP, Vargas P: Toxic psychosis following use of quinacrine. J. Clin. Psychiatry42(4),162–164 (1981).
  • 32  Lown B, Graboys TB, Podrid PJ, Cohen BH, Stockman MB, Gaughan CE: Effect of a digitalis drug on ventricular premature beats. N. Engl. J. Med.296(6),301–306 (1977).
  • 33  Carr RE, Henkind P, Rothfield N, Siegel IM: Ocular toxicity of antimalarial drugs. Long-term follow-up. Am. J. Ophthalmol.66(4),738–744 (1968).
  • 34  Dubois E: Lupus Erythematosus. University of Southern California, CA, USA (1976).
  • 35  Biro L, Leone N: Aplastic anemia induced by quinacrine. Arch. Dermatol.92(5),574–576 (1965).
  • 36  Heimpel H, Heit W: Drug-induced aplastic anaemia: clinical aspects. Clin. Haematol.9(3),641–662 (1980).
  • 37  Atkin NB: Y chromosomes and quinacrine fluorescence technique. BMJ4(5727),118 (1970).
  • 38  Caspersson T, Zech L, Johansson C, Modest EJ: Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma30(2),215–227 (1970).
  • 39  Gurova KV, Hill JE, Guo C et al.: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc. Natl Acad. Sci. USA102(48),17448–17453 (2005).
  • 40  Bourdon JC: p53 and its isoforms in cancer. Br. J. Cancer97(3),277–282 (2007).
  • 41  Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV: p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res.64(6),1951–1958 (2004).
  • 42  Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene24(17),2899–2908 (2005).
  • 43  Riemenschneider MJ, Buschges R, Wolter M et al.: Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res.59(24),6091–6096 (1999).
  • 44  Woynarowski JM, Bartoszek A, Konopa J: DNA damage in HeLa s3 cells by an antitumor drug Ledakrin and other antitumor 1-nitro-9-aminoacridines. Chem. Biol. Interact.49(3),311–328 (1984).
  • 45  Hour TC, Lee CC, Lin JK: A new mutagenicity assay method for frameshift mutagens based on deleting or inserting a guanosine nucleotide in the β-lactamase gene. Mutagenesis10(5),433–438 (1995).
  • 46  Tomosaka H, Omata S, Anzai K: Enhancement of mutagenic activity of 9-aminoacridine by introducing a nitro group into the molecule. Biosci. Biotechnol. Biochem.58(8),1420–1423 (1994).
  • 47  Covey JM, Kohn KW, Kerrigan D, Tilchen EJ, Pommier Y: Topoisomerase II-mediated DNA damage produced by 4´-(9-acridinylamino)methanesulfon-m-anisidide and related acridines in L1210 cells and isolated nuclei: relation to cytotoxicity. Cancer Res.48(4),860–865 (1988).
  • 48  Ahmed KM, Li JJ: ATM–NF-κB connection as a target for tumor radiosensitization. Curr. Cancer Drug Targets7(4),335–342 (2007).
  • 49  Wu ZH, Shi Y, Tibbetts RS, Miyamoto S: Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science311(5764),1141–1146 (2006).
  • 50  Habraken Y, Piette J: NF-κB activation by double-strand breaks. Biochem. Pharmacol.72(9),1132–1141 (2006).
  • 51  Snyder RD, Hendry LB: Toward a greater appreciation of noncovalent chemical/DNA interactions: application of biological and computational approaches. Environ. Mol. Mutagen.45(2–3),100–105 (2005).
  • 52  Finlay GJ, Wilson WR, Baguley BC: Chemoprotection by 9-aminoacridine derivatives against the cytotoxicity of topoisomerase II-directed drugs. Eur. J. Cancer Clin. Oncol.25(12),1695–1701 (1989).
  • 53  Mitchel RE, Burchart P, Wyatt H: A lower dose threshold for the in vivo protective adaptive response to radiation. Tumorigenesis in chronically exposed normal and Trp53 heterozygous C57BL/6 mice. Radiat. Res.170(6),765–775 (2008).
  • 54  Clarke JJ, Sokal DC, Cancel AM et al.: Re-evaluation of the mutagenic potential of quinacrine dihydrochloride dihydrate. Mutat. Res.494(1–2),41–53 (2001).
  • 55  Cook TM, Goldman CK: Hycanthone and its congeners as bacterial mutagens. J. Bacteriol.122(2),549–556 (1975).
  • 56  Ames B, Whitfield H: Frameshift mutagenesis in Salmonella. Cold Spring Harb. Symp. Quant. Biol.31,3221–3225 (1966).
  • 57  Gasc AM, Sicard AM: Genetic studies of acridine-induced mutants in Streptococcus pneumoniae. Genetics90(1),1–18 (1978).
  • 58  McCarroll NE, Piper CE, Keech BH: An E. coli microsuspension assay for the detection of DNA damage induced by direct-acting agents and promutagens. Environ. Mutagen.3(4),429–444 (1981).
  • 59  Jenssen D, Ramel C, Gothe R: The induction of micronuclei by frameshift mutagens at the time of nucleus expulsion in mouse erythroblasts. Mutat. Res.26(6),553–555 (1974).
  • 60  Krishnaja AP, Chauhan PS: Quinacrine dihydrochloride, the non-surgical female sterilant induces dicentrics, rings, and marker chromosomes in human peripheral blood lymphocytes treated in vitro: a preliminary report. Mutat. Res.466(1),43–50 (2000).
  • 61  Snyder RD, Arnone MR: Putative identification of functional interactions between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay. Mutat. Res.503(1–2),21–35 (2002).
  • 62  Neubort S, Liebeskind D, Mendez F, Elequin F, Hsu KC, Bases R: Morphological transformation, DNA strand separation, and antinucleoside immunoreactivity following exposure of cells to intercalating drugs. Mol. Pharmacol.21(3),739–743 (1982).
  • 63  Sevag MG: Prevention of the emergence of antibiotic-resistant strains of bacteria by atabrine. Arch. Biochem. Biophys.108,85–88 (1964).
  • 64  Sevag MG, Ashton B: Evolution and prevention of drug-resistance. Nature203,1323–1326 (1964).
  • 65  Johnson HG, Bach MK: Apparent antimutagenic activity of quinacrine hydrochloride in Detroit-98 human sternal marrow cells grown in culture. Cancer Res.29(7),1367–1370 (1969).
  • 66  Bach MK: Reduction in the frequency of mutation to resistance to cytarabine in L1210 murine leukemic cells by treatment with quinacrine hydrochloride. Cancer Res.29(10),1881–1885 (1969).
  • 67  Johnson HG, Bach MK: The antimutagenic action of polyamines: suppression of the mutagenic action of an E. coli mutator gene and of 2-aminopurine. Proc. Natl Acad. Sci. USA55(6),1453–1456 (1966).
  • 68  Koranda FC: Antimalarials. J. Am. Acad. Dermatol.4(6),650–655 (1981).
  • 69  Zipper J, Trujillo V: 25 years of quinacrine sterilization experience in Chile: review of 2,592 cases. Int. J. Gynaecol. Obstet.,83(Suppl. 2),S23–S29 (2003).
  • 70  Kessel E: 100,000 quinacrine sterilizations. Adv. Contracept.12(2),69–76 (1996).
  • 71  Cancel AM, Smith T, Rehkemper U, Dillberger JE, Sokal D, McClain RM: A one-year neonatal mouse carcinogenesis study of quinacrine dihydrochloride. Int. J. Toxicol.25(2),109–118 (2006).
  • 72  Reyes S, Rembao D, Sotelo J: The antimalarials quinacrine and chloroquine potentiate the transplacental carcinogenic effect of ethylnitrosourea on ependymal cells. Brain Tumor Pathol.18(2),83–87 (2001).
  • 73  Dutta P, Karmali R, Pinto JT, Rivlin RS: Enhanced growth of mammary adenocarcinoma in rats by chloroquine and quinacrine. Cancer Lett.76(2–3),113–119 (1994).
  • 74  Furukawa F, Nishikawa A, Imazawa T, Kasahara K, Takahashi M: Enhancing effects of quinacrine on development of hepatopancreatic lesions in N-nitrosobis(2-oxopropyl)amine-initiated hamsters. Jpn. J. Cancer Res.89(2),131–136 (1998).
  • 75  Neznanov N, Gorbachev AV, Neznanova L et al.: Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell Cycle8(23),1–11 (2009).
  • 76  Sors A, Jean-Louis F, Pellet C et al.: Down-regulating constitutive activation of the NF-κB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood107(6),2354–2363 (2006).
  • 77  Schwartz SA, Hernandez A, Mark Evers B: The role of NF-κB/IκB proteins in cancer: implications for novel treatment strategies. Surg. Oncol.8(3),143–153 (1999).
  • 78  Rossi A, Ciafre S, Balsamo M, Pierimarchi P, Santoro MG: Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer. Cancer Res.66(15),7678–7685 (2006).
  • 79  McAnulty JF, Waller K: The effect of quinacrine on oxidative stress in kidney tissue stored at low temperature after warm ischemic injury. Cryobiology39(3),197–204 (1999).
  • 80  Lochner A, Genade S, Tromp E, Theron S, Trollip G: Postcardioplegic myocardial recovery: effects of halothane, nifedipine, HOE 694, and quinacrine. Cardiovasc. Drugs Ther.12(3),267–277 (1998).
  • 81  Bugge E, Gamst TM, Hegstad AC, Andreasen T, Ytrehus K: Mepacrine protects the isolated rat heart during hypoxia and reoxygenation – but not by inhibition of phospholipase A2. Basic Res. Cardiol.92(1),17–24 (1997).
  • 82  Estevez AY, Phillis JW: The phospholipase A2 inhibitor, quinacrine, reduces infarct size in rats after transient middle cerebral artery occlusion. Brain Res.752(1–2),203–208 (1997).
  • 83  Chiariello M, Ambrosio G, Cappelli-Bigazzi M et al.: Reduction in infarct size by the phospholipase inhibitor quinacrine in dogs with coronary artery occlusion. Am. Heart J.120(4),801–807 (1990).
  • 84  Moffat MP, Tsushima RG: Functional and electrophysiological effects of quinacrine on the response of ventricular tissues to hypoxia and reoxygenation. Can. J. Physiol. Pharmacol.67(8),929–935 (1989).
  • 85  van Bilsen M, van der Vusse GJ, Willemsen PH, Coumans WA, Roemen TH, Reneman RS: Effects of nicotinic acid and mepacrine on fatty acid accumulation and myocardial damage during ischemia and reperfusion. J. Mol. Cell. Cardiol.22(2),155–163 (1990).
  • 86  Gonzalez Padron A, de Toranzo EG, Castro JA: Late preventive effects of quinacrine on carbon tetrachloride induced liver necrosis. Arch. Toxicol.67(6),386–391 (1993).
  • 87  al-Bayati ZA, Stohs SJ: The possible role of phospholipase A2 in hepatic microsomal lipid peroxidation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Arch. Environ. Contam. Toxicol.20(3),361–365 (1991).
  • 88  Stacey NH, Klaassen CD: Effects of phospholipase A2 inhibitors on diethyl maleate-induced lipid peroxidation and cellular injury in isolated rat hepatocytes. J. Toxicol. Environ. Health9(3),439–450 (1982).
  • 89  Ong WY, Lu XR, Horrocks LA, Farooqui AA, Garey LJ: Induction of astrocytic cytoplasmic phospholipase A2 and neuronal death after intracerebroventricular carrageenan injection, and neuroprotective effects of quinacrine. Exp. Neurol.183(2),449–457 (2003).
  • 90  Wang XS, Ong WY, Connor JR: Quinacrine attenuates increases in divalent metal transporter-1 and iron levels in the rat hippocampus, after kainate-induced neuronal injury. Neuroscience120(1),21–29 (2003).
  • 91  Tariq M, Khan HA, Al Moutaery K, Al Deeb S: Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res. Bull.54(1),77–82 (2001).
  • 92  Smith HJ, Tisdale MJ: Signal transduction pathways involved in proteolysis-inducing factor induced proteasome expression in murine myotubes. Br. J. Cancer89(9),1783–1788 (2003).
  • 93  Kohjimoto Y, Kennington L, Scheid CR, Honeyman TW: Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int.56(4),1432–1441 (1999).
  • 94  Hossain M, Giri P, Kumar GS: DNA intercalation by quinacrine and methylene blue: a comparative binding and thermodynamic characterization study. DNA Cell Biol.27(2),81–90 (2008).
  • 95  Nardo L, Bondani M, Andreoni A: DNA-ligand binding mode discrimination by characterizing fluorescence resonance energy transfer through lifetime measurements with picosecond resolution. Photochem. Photobiol.84(1),101–110 (2008).
  • 96  Aloisi GG, Amelia M, Barbafina A et al.: DNA cleavage induced by photoexcited antimalarial drugs: a photophysical and photobiological study. Photochem. Photobiol.83(3),664–674 (2007).
  • 97  Aslanoglu M, Ayne G: Voltammetric studies of the interaction of quinacrine with DNA. Anal. Bioanal. Chem.380(4),658–663 (2004).
  • 98  Jones RL, Lanier AC, Keel RA, Wilson WD: The effect of ionic strength on DNA-ligand unwinding angles for acridine and quinoline derivatives. Nucleic Acids Res.8(7),1613–1624 (1980).
  • 99  Jones RL, Davidson MW, Wilson WD: Comparative viscometric analysis of the interaction of chloroquine and quinacrine with superhelical and sonicated DNA. Biochim. Biophys. Acta,561(1),77–84 (1979).
  • 100  Bewley CA, Gronenborn AM, Clore GM: Minor groove-binding architectural proteins: structure, function, and DNA recognition. Annu. Rev. Biophys. Biomol. Struct.27,105–131 (1998).
  • 101  Moravek Z, Neidle S, Schneider B: Protein and drug interactions in the minor groove of DNA. Nucleic Acids Res.30(5),1182–1191 (2002).
  • 102  Kahne D: Strategies for the design of minor groove binders: a re-evaluation based on the emergence of site-selective carbohydrate binders. Chem. Biol.2(1),7–12 (1995).
  • 103  Cai X, Gray PJ Jr, Von Hoff DD: DNA minor groove binders: back in the groove. Cancer Treat Rev.35(5),437–450 (2009).
  • 104  Scaria PV, Craig JC, Shafer RH: Differential binding of the enantiomers of chloroquine and quinacrine to polynucleotides: implications for stereoselective metabolism. Biopolymers33(6),887–895 (1993).
  • 105  Denny WA: DNA-intercalating ligands as anti-cancer drugs: prospects for future design. Anticancer Drug Des.4(4),241–263 (1989).
  • 106  Albertini S, Chetelat AA, Miller B et al.: Genotoxicity of 17 gyrase- and four mammalian topoisomerase II-poisons in prokaryotic and eukaryotic test systems. Mutagenesis10(4),343–351 (1995).
  • 107  Snyder RD, Gillies PJ: Evaluation of the clastogenic, DNA intercalative, and topoisomerase II-interactive properties of bioflavonoids in Chinese hamster V79 cells. Environ. Mol. Mutagen.40(4),266–276 (2002).
  • 108  Wolfe AD, Cook TM, Hahn FE: Antibacterial nitroacridine, Nitroakridin 3582: binding to nucleic acids in vitro and effects on selected cell-free model systems of macromolecular biosynthesis. J. Bacteriol.108(3),1026–1033 (1971).
  • 109  Nelson SM, Ferguson LR, Denny WA: Non-covalent ligand/DNA interactions: minor groove binding agents. Mutat. Res.623(1–2), 24–40 (2007).
  • 110  Brosh RM Jr, Karow JK, White EJ, Shaw ND, Hickson ID, Bohr VA. Potent inhibition of werner and bloom helicases by DNA minor groove binding drugs. Nucleic Acids Res.28(12),2420–2430 (2000).
  • 111  Ghersa P, Whelan J, Cambet Y, DeLamarter JF, Hooft van Huijsduijnen R: Distamycin prolongs E-selectin expression by interacting with a specific NF-κB-HMG-I(Y) binding site in the promoter. Nucleic Acids Res.25(2),339–346 (1997).
  • 112  Takamiya R, Baron RM, Yet SF, Layne MD, Perrella MA: High mobility group A1 protein mediates human nitric oxide synthase 2 gene expression. FEBS Lett.582(5),810–814 (2008).
  • 113  Goodwin GH, Sanders C, Johns EW: A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur. J. Biochem.38(1),14–19 (1973).
  • 114  Thomas JO, Travers AA: HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem. Sci.26(3),167–174 (2001).
  • 115  Juo ZS, Chiu TK, Leiberman PM, Baikalov I, Berk AJ, Dickerson RE: How proteins recognize the TATA box. J. Mol. Biol.261(2),239–254 (1996).
  • 116  Lewis M, Chang G, Horton NC et al.: Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science271(5253),1247–1254 (1996).
  • 117  Schultz S, Sheields G, Steitz T: Crystal structure of a CAP–DNA complex: the DNA is bent by 90 degrees. Science253,1001–1007 (1991).
  • 118  Schumacher M, Choi K, Zalkin H, Brennan R: Crystal structure of LacI member, PuR, bound to DNA: minor groove binding by a helices. Science256,763–770 (1994).
  • 119  Farnet CM, Bushman FD: HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell88(4),483–492 (1997).
  • 120  Thanos D, Maniatis T: Virus induction of human IFN-b gene expression requires the assembly of an enhanceosome. Cell83(7),1091–1100 (1995).
  • 121  Chen FE, Ghosh G: Regulation of DNA binding by Rel/NF-κB transcription factors: structural views. Oncogene18(49),6845–6852 (1999).
  • 122  Bianchi ME, Agresti A: HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev.15(5),496–506 (2005).
  • 123  Reinberg D, Sims RJ 3rd: De facto nucleosome dynamics. J. Biol. Chem.281(33),23297–23301 (2006).
  • 124  Agresti A, Bianchi ME: HMGB proteins and gene expression. Curr. Opin. Genet. Dev.13(2),170–178 (2003).
  • 125  Martinez Hoyos J, Fedele M, Battista S et al.: Identification of the genes up- and down-regulated by the high mobility group A1 (HMGA1) proteins: tissue specificity of the HMGA1-dependent gene regulation. Cancer Res.64(16),5728–5735 (2004).
  • 126  Chau KY, Keane-Myers AM, Fedele M et al.: IFN-g gene expression is controlled by the architectural transcription factor HMGA1. Int. Immunol.17(3),297–306 (2005).
  • 127  Whitley MZ, Thanos D, Read MA, Maniatis T, Collins T: A striking similarity in the organization of the E-selectin and b interferon gene promoters. Mol. Cell. Biol.14(10),6464–6475 (1994).
  • 128  Lewis H, Kaszubska W, DeLamarter JF, Whelan J: Cooperativity between two NF-κB complexes, mediated by high-mobility-group protein I(Y), is essential for cytokine-induced expression of the E-selectin promoter. Mol. Cell. Biol.14(9),5701–5709 (1994).
  • 129  Treff NR, Dement GA, Adair JE et al.: Human KIT ligand promoter is positively regulated by HMGA1 in breast and ovarian cancer cells. Oncogene23(52),8557–8562 (2004).
  • 130  Attema JL, Reeves R, Murray V et al.: The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation. J. Immunol.,169(5),2466–2476 (2002).
  • 131  Foti D, Chiefari E, Fedele M et al.: Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat. Med.11(7),765–773 (2005).
  • 132  Agresti A, Scaffidi P, Riva A, Caiolfa VR, Bianchi ME: GR and HMGB1 interact only within chromatin and influence each other’s residence time. Mol. Cell.18(1),109–121 (2005).
  • 133  Saunders A, Werner J, Andrulis ED et al.: Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science301(5636),1094–1096 (2003).
  • 134  Abde l-Latif AA, Smith JP, Akhtar RA: Studies on the mechanism of alteration by propranolol and mepacrine of the metabolism of phosphoinositides and other glycerolipids in the rabbit iris muscle. Biochem. Pharmacol.32(24),3815–3821 (1983).
  • 135  Dise CA, Burch JW, Goodman DB: Direct interaction of mepacrine with erythrocyte and platelet membrane phospholipid. J. Biol. Chem.257(9),4701–4704 (1982).
  • 136  Mustonen P, Lehtonen JY, Kinnunen PK: Binding of quinacrine to acidic phospholipids and pancreatic phospholipase A2. Effects on the catalytic activity of the enzyme. Biochemistry37(35),12051–12057 (1998).
  • 137  Jain MK, Yu BZ, Rogers J, Ranadive GN, Berg OG: Interfacial catalysis by phospholipase A2: dissociation constants for calcium, substrate, products, and competitive inhibitors. Biochemistry30(29),7306–7317 (1991).
  • 138  Loffler BM, Bohn E, Hesse B, Kunze H: Effects of antimalarial drugs on phospholipase A and lysophospholipase activities in plasma membrane, mitochondrial, microsomal and cytosolic subcellular fractions of rat liver. Biochim. Biophys. Acta.835(3),448–455 (1985).
  • 139  Schiess K, Kaszkin M, Jordan P, Seidler L, Kinzel V: Mobilization of diacylglycerol in intact HeLa cells by exogenous phospholipase C from Cl. perfringens is accompanied by release of fatty acids including arachidonic acid. Biochim. Biophys. Acta.1137(1),82–94 (1992).
  • 140  Ahmed A, Cameron IT, Ferriani RA, Smith SK: Activation of phospholipase A2 and phospholipase C by endothelin-1 in human endometrium. J. Endocrinol.135(2),383–390 (1992).
  • 141  Torda T, Yamaguchi I, Hirata F, Kopin IJ, Axelrod J: Quinacrine-blocked desensitization of adrenoceptors after immobilization stress or repeated injection of isoproterenol in rats. J. Pharmacol. Exp. Ther.16(2),334–338 (1981).
  • 142  Yamada K, Okano Y, Miura K, Nozawa Y: A major role for phospholipase A2 in antigen-induced arachidonic acid release in rat mast cells. Biochem. J.247(1),95–99 (1987).
  • 143  Xiao YF, Zeind AJ, Kaushik V, Perreault-Micale CL, Morgan JP: Mechanism of suppression of cardiac L-type Ca(2+) currents by the phospholipase A(2) inhibitor mepacrine. Eur. J. Pharmacol.399(2–3),107–116 (2000).
  • 144  Eldefrawi M: Interactions of drug with the nicotinic acetylcholine receptor and its ionic channel. Prog. Clin. Biol. Res.27,63–71 (1979).
  • 145  Flamand N, Plante H, Picard S, Laviolette M, Borgeat P: Histamine-induced inhibition of leukotriene biosynthesis in human neutrophils: involvement of the H2 receptor and cAMP. Br. J. Pharmacol.141(4),552–561 (2004).
  • 146  Zamora JM, Pearce HL, Beck WT: Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol.33(4),454–462 (1988).
  • 147  Beckman JK, Borowitz SM, Burr IM: The role of phospholipase A activity in rat liver microsomal lipid peroxidation. J. Biol. Chem.262(4),1479–1484 (1987).
  • 148  Becker BN, Cheng HF, Harris RC: Apical ANG II-stimulated PLA2 activity and Na+ flux: a potential role for Ca2+-independent PLA2. Am. J. Physiol.273(4 Pt 2),F554–F562 (1997).
  • 149  Filippov A, Skatova G, Porotikov V, Kobrinsky E, Saxon M: Ca2+-antagonistic properties of phospholipase A2 inhibitors, mepacrine and chloroquine. Gen. Physiol. Biophys.8(2),113–118 (1989).
  • 150  Volpi M, Sha’afi RI, Epstein PM, Andrenyak DM, Feinstein MB: Local anesthetics, mepacrine, and propranolol are antagonists of calmodulin. Proc. Natl Acad. Sci. USA78(2),795–799 (1981).
  • 151  Blackwell GJ, Duncombe WG, Flower RJ, Parsons MF, Vane JR: The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs. Br. J. Pharmacol.59(2),353–366 (1977).
  • 152  Crouch MF, Roberts ML, Tennes KA: Mepacrine inhibition of bradykinin-induced contractions of the rabbit ear vein. Agents Actions11(4),330–334 (1981).
  • 153  Becker BN, Harris RC: A potential mechanism for proximal tubule angiotensin II-mediated sodium flux associated with receptor-mediated endocytosis and arachidonic acid release. Kidney Int. Suppl.57,S66–S72 (1996).
  • 154  Locati M, Zhou D, Luini W, Evangelista V, Mantovani A, Sozzani S: Rapid induction of arachidonic acid release by monocyte chemotactic protein-1 and related chemokines. Role of Ca2+ influx, synergism with platelet-activating factor and significance for chemotaxis. J. Biol. Chem.269(7),4746–4753 (1994).
  • 155  Du X, Harris SJ, Tetaz TJ, Ginsberg MH, Berndt MC: Association of a phospholipase A2 (14–3–3 protein) with the platelet glycoprotein Ib-IX complex. J. Biol. Chem.269(28),18287–18290 (1994).
  • 156  Palmetshofer A, Robson SC, Nehls V: Lysophosphatidic acid activates nuclear factor kappa B and induces proinflammatory gene expression in endothelial cells. Thromb. Haemost.82(5),1532–1537 (1999).
  • 157  Diaz GJ, Squires EJ: Role of aldehyde oxidase in the hepatic in vitro metabolism of 3-methylindole in pigs. J. Agric. Food Chem.48(3),833–837 (2000).
  • 158  Renton KW, Mannering GJ: Depression of hepatic cytochrome P-450-dependent monooxygenase systems with administered interferon inducing agents. Biochem. Biophys. Res. Commun.73(2),343–348 (1976).
  • 159  Thabrew MI, Ioannides C: Inhibition of rat hepatic mixed function oxidases by antimalarial drugs: selectivity for cytochromes P-450 and P-448. Chem. Biol. Interact.51(3),285–294 (1984).
  • 160  Thabrew MI, Nashiru TO, Emerole GO: Drug induced alterations in some rat hepatic microsomal components: a comparative study of four structurally different antimalarials. Comp. Biochem. Physiol. C,81(1),133–138 (1985).
  • 161  Young RA, Mehendale HM: Effect of cytochrome P-450 and flavin-containing monooxygenase modifying factors on the in vitro metabolism of amiodarone by rat and rabbit. Drug Metab. Dispos.15(4),511–517 (1987).
  • 162  Nagai J, Tanaka M, Hibasami H, Ikeda T: Inhibition of oxidative hemolysis and lipid peroxidation by mepacrine. J. Biochem. (Tokyo)89(4),1143–1148 (1981).
  • 163  Canonico PL, Judd AM, Koike K, Valdenegro CA, MacLeod RM: Arachidonate stimulates prolactin release in vitro: a role for the fatty acid and its metabolites as intracellular regulator(s) in mammotrophs. Endocrinology116(1),218–225 (1985).
  • 164  Metz SA: Exogenous arachidonic acid promotes insulin release from intact or permeabilized rat islets by dual mechanisms. Putative activation of Ca2+ mobilization and protein kinase C: Diabetes37(11),1453–1469 (1988).
  • 165  Thomson FJ, Johnson MS, Mitchell R, Wolbers B: Evidence for a role of phospholipase A2 in the mechanism of LHRH priming in rat anterior pituitary tissue. J. Endocrinol.141(1),15–31 (1994).
  • 166  Thomson FJ, Mitchell R: Differential involvement of phospholipase A2 in phorbol ester-induced luteinizing hormone and growth hormone release from rat anterior pituitary tissue. Mol. Cell. Endocrinol.95(1–2),75–83 (1993).
  • 167  Ma K, Sourkes TL: Inhibition of diamine oxidase by antimalarial drugs. Agents Actions10(5),395–398 (1980).
  • 168  Otamiri TA: Influence of quinacrine on plasma malondialdehyde after small intestinal ischemia and reperfusion. Circ. Shock24(1),63–69 (1988).
  • 169  Al Moutaery AR, Tariq M: Effect of quinacrine, a phospholipase A2 inhibitor on stress and chemically induced gastroduodenal ulcers. Digestion58(2),129–137 (1997).
  • 170  Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X: Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure (Camb.)9(9),837–849 (2001).
  • 171  Preclik G, Stange EF, Ditschuneit H: Activation of PGE2-secretion from gastric mucosa by a type I phospholipase C is mediated by a direct release of arachidonic acid. Clin. Physiol. Biochem.9(2),78–86 (1992).
  • 172  Hou W, Arita Y, Morisset J: Endogenous arachidonic acid release and pancreatic amylase secretion. Pancreas14(3),301–308 (1997).
  • 173  Meneghini R: Repair replication of opossum lymphocyte DNA: effect of compounds that bind to DNA. Chem. Biol. Interact.8(2),113–126 (1974).
  • 174  Hart JW, Hartley-Asp B: Induction of micronuclei in the mouse. Revised timing of the final stage of erythropoiesis. Mutat. Res.120(2–3),127–132 (1983).
  • 175  Xamena N, Creus A, Velazquez A, Marcos R: Testing of chloroquine and quinacrine for mutagenicity in Drosophila melanogaster. Mutat. Res.158(3),177–180 (1985).