We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
PerspectiveFree Access

A multifaceted ‘omics’ approach for addressing the challenge of antimicrobial resistance

    Asi Cohen

    MeMed Diagnostics, Tirat Carmel, Israel

    ,
    Louis Bont

    Department of Pediatric Infectious Diseases & Immunology & Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

    ,
    Dan Engelhard

    Pediatric Department, Pediatric Infectious Disease Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel

    ,
    Edward Moore

    University of Gothenburg, Gothenburg, Sweden

    , , ,
    Kfir Oved

    MeMed Diagnostics, Tirat Carmel, Israel

    ,
    Eran Eden

    MeMed Diagnostics, Tirat Carmel, Israel

    &
    John P Hays

    *Author for correspondence:

    E-mail Address: j.hays@erasmusmc.nl

    Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands

    Published Online:https://doi.org/10.2217/fmb.14.127

    ABSTRACT 

    The inappropriate use of antibiotics has severe global health and economic consequences, including the emergence of antibiotic-resistant bacteria. A major driver of antibiotic misuse is the inability to accurately distinguish between bacterial and viral infections based on currently available diagnostic solutions. A multifaceted ‘omics’ approach that integrates personalized patient data such as genetic predisposition to infections (genomics), natural microbiota composition and immune response to infection (proteomics and transcriptomics) together with comprehensive pathogen profiling has the potential to help physicians improve their antimicrobial prescribing practices. In this respect, the EU has funded a multidisciplinary project (TAILORED-Treatment) that will develop novel omics-based personalized treatment schemes that have the potential to reduce antibiotic consumption, and help limiting the spread of antibiotic resistance.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 CDC. Threat Report 2013. Antimicrobial Resistance. www.cdc.gov/drugresistance/threat-report-2013/.• The most up-to-date and comprehensive report describing the antibiotic resistance threats in the USA.
    • 2 CDC – About Antimicrobial Resistance. www.cdc.gov/drugresistance/about.html.
    • 3 Bartlett JG. Clinical practice. Antibiotic-associated diarrhea. N. Engl. J. Med. 346(5), 334–339 (2002).
    • 4 Craig JC, Williams GJ, Jones M et al. The accuracy of clinical symptoms and signs for the diagnosis of serious bacterial infection in young febrile children: prospective cohort study of 15,781 febrile illnesses (2010). www.ncbi.nlm.nih.gov/pmc/articles/PMC2857748/.
    • 5 Dedier J, Singer DE, Chang Y, Moore M, Atlas SJ. Processes of care, illness severity, and outcomes in the management of community-acquired pneumonia at academic hospitals. Arch. Intern. Med. 161(17), 2099–2104 (2001).
    • 6 Caterino JM, Hiestand BC, Martin DR. Quality of care in elder emergency department patients with pneumonia: a prospective cohort study. BMC Emerg. Med. 8, 6 (2008).
    • 7 Houck PM. Timing of antibiotic administration and outcomes for medicare patients hospitalized with community-acquired pneumonia. Arch. Intern. Med. 164(6), 637–644 (2004).
    • 8 Zwart S, Sachs AP, Ruijs GJ, Gubbels JW, Hoes AW, de Melker RA. Penicillin for acute sore throat: randomised double blind trial of seven days versus three days treatment or placebo in adults. BMJ 320(7228), 150–154 (2000).
    • 9 Little P. Delayed prescribing of antibiotics for upper respiratory tract infection. BMJ 331(7512), 301–302 (2005).
    • 10 Spiro DM, Tay K-Y, Arnold DH, Dziura JD, Baker MD, Shapiro ED. Wait-and-see prescription for the treatment of acute otitis media: a randomized controlled trial. J. Am. Med. Assoc. 296(10), 1235–1241 (2006).
    • 11 Fauci AS, Marston HD. The perpetual challenge of antimicrobial resistance. JAMA 311(18), 1853–1854 (2014).
    • 12 Armstrong GL, Conn LA, Pinner RW. Trends in infectious disease mortality in the United States during the 20th century. J. Am. Med. Assoc. 281(1), 61–66 (1999).
    • 13 Hollis A, Ahmed Z. Preserving antibiotics, rationally. N. Engl. J. Med. 369(26), 2474–2476 (2013).
    • 14 CDC. Get smart: fast facts about antibiotic resistance. www.cdc.gov/getsmart/antibiotic-use/fast-facts.html.
    • 15 European Surveillance of Antimicrobial Consumption Network (ESAC-Net). www.ecdc.europa.eu/en/activities/surveillance/ESAC-Net/Pages/index.aspx.
    • 16 WHO Europe. Data and statistics. www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/data-and-statistics.
    • 17 WHO. Antimicrobial resistance. www.who.int/mediacentre/factsheets/fs194/en/index.html.
    • 18 Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century – a clinical super-challenge. N. Engl. J. Med. 360(5), 439–443 (2009).
    • 19 Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29(5), 240–250 (2011).
    • 20 Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab. Chip. 12(14), 2469–2486 (2012).
    • 21 Kim KH, Shin JH, Kim SY. The clinical significance of nasopharyngeal carriages in immunocompromised children as assessed. Korean J. Hematol. 44(4), 220–226 (2009).
    • 22 Shin JH, Han HY, Kim SY. Detection of nasopharyngeal carriages in children by multiplex reverse transcriptase-polymerase chain reaction. Korean J. Pediatr. 52(12), 1358 (2009).
    • 23 Jung CL, Lee MA, Chung WS. Clinical evaluation of the multiplex PCR Assay for the detection of bacterial pathogens in respiratory specimens from patients with pneumonia. Korean J. Clin. Microbiol. 13(1), 1358–1363 (2010).
    • 24 Rhedin S, Lindstrand A, Rotzén-Östlund M et al. Clinical utility of PCR for common viruses in acute respiratory illness. Pediatrics 133(3), e538–e545 (2014).• Provides a comprehensive evaluation of qPCR tests for common viruses in acute respiratory illness.
    • 25 Bogaert D, De Groot R, Hermans PWM. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4(3), 144–154 (2004).
    • 26 Spuesens EBM, Fraaij PLA, Visser EG et al. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: An observational study. PLoS Med. 10(5), e1001444 (2013).
    • 27 Laxminarayan R, Duse A, Wattal C et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13(12), 1057–1098 (2013).
    • 28 Aderem A, Adkins JN, Ansong C et al. A systems biology approach to infectious disease research: innovating the pathogen-host research paradigm. mBio 2(1), e00325–e00310 (2011).
    • 29 Cooper MA, Shlaes D. Fix the antibiotics pipeline. Nature 472(7341), 32 (2011).
    • 30 Press Announcements – new FDA task force will support innovation in antibacterial drug development. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm320643.htm.
    • 31 Kirby T. Europe to boost development of new antimicrobial drugs. Lancet 379(9833), 2229–2230 (2012).
    • 32 IMS Institute. Responsible Use of Medicines Report 2012. www.imshealth.com/portal/site/imshealth/menuitem.762a961826aad98f53c753c71ad8c22a/?vgnextoid=faf9ee0a8e631410VgnVCM10000076192ca2RCRD&vgnextchannel=736de5fda6370410VgnVCM10000076192ca2RCRD&vgnextfmt=default.
    • 33 Too Many Antibiotics! Patients and Prescribers Speak Up. www.medscape.com/features/slideshow/public/antibiotic-misuse#1.
    • 34 Tailored-Treatment. www.tailored-treatment.eu.
    • 35 Tailored-Treatment. Goals and concept. www.tailored-treatment.eu/?page_id=7.
    • 36 Laing RE, Hess P, Shen Y, Wang J, Hu SX. The role and impact of SNPs in pharmacogenomics and personalized medicine. Curr. Drug Metab. 12(5), 460–486 (2011).
    • 37 Hofker M, Fu J, Wijmenga C. The genome revolution and its role in understanding complex diseases. Biochim. Biophys. Acta. 1842(10), 1889–1895 (2014).
    • 38 Chapman SJ, Hill AVS. Human genetic susceptibility to infectious disease. Nat. Rev. Genet. 13(3), 175–188 (2012).
    • 39 Emonts M, Hazelzet JA, de Groot R, Hermans PWM. Host genetic determinants of Neisseria meningitidis infections. Lancet Infect. Dis. 3(9), 565–577 (2003).
    • 40 Brouwer MC, de Gans J, Heckenberg SGB, Zwinderman AH, van der Poll T, van de Beek D. Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect. Dis. 9(1), 31–44 (2009).
    • 41 Boyd JH, Russell JA, Fjell CD. The meta-genome of sepsis: host genetics, pathogens and the acute immune response. J. Innate Immun. 6(3), 272–283 (2014).
    • 42 Ruimy R, Angebault C, Djossou F et al. Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans? J. Infect. Dis. 202(6), 924–934 (2010).
    • 43 Ge D, Fellay J, Thompson AJ et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262), 399–401 (2009).
    • 44 Rauch A, Kutalik Z, Descombes P et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138(4), 1338–1345, 1345.e1–7 (2010).
    • 45 Tanaka Y, Nishida N, Sugiyama M et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41(10), 1105–1109 (2009).
    • 46 Ochi H, Maekawa T, Abe H et al. IL-28B predicts response to chronic hepatitis C therapy – fine-mapping and replication study in Asian populations. J. Gen. Virol. 92(Pt 5), 1071–1081 (2011).
    • 47 Hetherington S, Hughes AR, Mosteller M et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359(9312), 1121–1122 (2002).
    • 48 Mallal S, Nolan D, Witt C et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308), 727–732 (2002).
    • 49 Martin AM, Nolan D, Gaudieri S et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc. Natl Acad. Sci. USA 101(12), 4180–4185 (2004).
    • 50 Colombo S, Rauch A, Rotger M et al. The HCP5 single-nucleotide polymorphism: a simple screening tool for prediction of hypersensitivity reaction to abacavir. J. Infect. Dis. 198(6), 864–867 (2008).
    • 51 Young B, Squires K, Patel P et al. First large, multicenter, open-label study utilizing HLA-B*5701 screening for abacavir hypersensitivity in North America. AIDS Lond. Engl. 22(13), 1673–1675 (2008).
    • 52 Mejias A, Suarez NM, Ramilo O. Detecting specific infections in children through host responses: a paradigm shift. Curr. Opin. Infect. Dis. 27(3), 228–235 (2014).
    • 53 Ramilo O, Mejías A. Shifting the paradigm: host gene signatures for diagnosis of infectious diseases. Cell Host Microbe 6(3), 199–200 (2009).• These two papers describe the paradigm shift for diagnosing infections using the host differential immune response following the groundbreaking discoveries of their and other research groups.
    • 54 Huang Y, Zaas AK, Rao A et al. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genet. 7(8), e1002234 (2011).
    • 55 Woods CW, McClain MT, Chen M et al. A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2. PloS ONE 8(1), e52198 (2013).
    • 56 Zaas AK, Chen M, Varkey J et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe 6(3), 207–217 (2009).
    • 57 Ramilo O, Allman W, Chung W et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 109(5), 2066–2077 (2007).
    • 58 Mahajan P, Ramilo O, Kuppermann N. The future possibilities of diagnostic testing for the evaluation of febrile infants. JAMA Pediatr. 167(10), 888–898 (2013).
    • 59 Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9(6), 703–719 (2012).
    • 60 Kato K. Impact of the next generation DNA sequencers. Int. J. Clin. Exp. Med. 2(2), 193–202 (2009).
    • 61 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009).
    • 62 Peng X, Gralinski L, Armour CD et al. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. mBio 1(5), e00206–10 (2010).
    • 63 Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science 312(5778), 1355–1359 (2006).
    • 64 Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13(4), 260–270 (2012).• A comprehensive review that describes the role the human microbiome play in health and disease.
    • 65 Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146(6), 1564–1572 (2014).
    • 66 Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu. Rev. Pathol. 7, 99–122 (2012).
    • 67 Madupu R, Szpakowski S, Nelson KE. Microbiome in human health and disease. Sci. Prog. 96(Pt 2), 153–170 (2013).
    • 68 Human Microbiome Project DACC – home. www.hmpdacc.org/.
    • 69 Human Microbiome Project – home. http://commonfund.nih.gov/hmp/index.
    • 70 Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30(1), 759–795 (2012).
    • 71 Pérez-Cobas AE, Gosalbes MJ, Friedrichs A et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut. 62(11), 1591–1601 (2012).
    • 72 Lan Y, Kriete A, Rosen GL. Selecting age-related functional characteristics in the human gut microbiome. Microbiome 1(1), 2 (2013).
    • 73 Karlsson R, Davidson M, Svensson-Stadler L et al. Strain-level typing and identification of bacteria using mass spectrometry-based proteomics. J. Proteome Res. 11(5), 2710–2720 (2012).
    • 74 Chooneea D, Karlsson R, Encheva V, Arnold C, Appleton H, Shah H. Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique. BMC Microbiol. 10, 44 (2010).
    • 75 Lloyd S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
    • 76 Cai H, Ruan P, Ng M, Akutsu T. Feature weight estimation for gene selection: a local hyperlinear learning approach. BMC Bioinformatics 15(1), 70 (2014).
    • 77 Srikant R, Agrawal R. Mining generalized association rules. Future Gener. Comput. Syst. 13(2–3), 161–180 (1997).
    • 78 Salzberg SL. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn. 16(3), 235–240 (1994).
    • 79 Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000).
    • 80 Durmuş Tekir SD, Ülgen KÖ. Systems biology of pathogen-host interaction: networks of protein-protein interaction within pathogens and pathogen-human interactions in the post-genomic era. Biotechnol. J. 8(1), 85–96 (2013).
    • 81 InformationWeek. 10 wearable health tech devices to watch. www.informationweek.com/healthcare/mobile-wireless/10-wearable-health-tech-devices-to-watch/240012613.