We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb.12.59

sRNAs that act by base pairing were first discovered in plasmids, phages and transposons, where they control replication, maintenance and transposition. Since 2001, however, computational searches were applied that led to the discovery of a plethora of sRNAs in bacterial chromosomes. Whereas the majority of these chromsome-encoded sRNAs have been investigated in Escherichia coli, Salmonella and other Gram-negative bacteria, only a few well-studied examples are known from Gram-positive bacteria. Here, the author summarizes our current knowledge on plasmid- and chromosome-encoded sRNAs from Gram-positive species, thereby focusing on regulatory mechanisms used by these RNAs and their biological role in complex networks. Furthermore, regulatory factors that control the expression of these RNAs will be discussed and differences between sRNAs from Gram-positive and Gram-negative bacteria highlighted. The main emphasis of this review is on sRNAs that act by base pairing (i.e., by an antisense mechanism). Thereby, both plasmid-encoded and chromosome-encoded sRNAs will be considered.

Papers of special note have been highlighted as: ▪ of interest

References

  • Hershberg R, Altuvia S, Margalit H. A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res.31,1813–1820 (2003).
  • Narberhaus F. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol.7,84–89 (2010).
  • Breaker RR. Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol.4(2),a003566 (2012).
  • Brantl S. Bacterial chromosome-encoded small regulatory RNAs. Future Microbiol.4,85–103 (2009).
  • Romby P, Charpentier E. An overview of RNAs with regulatory functions in Gram-positive bacteria. Cell. Mol. Life Sci.67,217–237 (2010).
  • Tomizawa J, Itoh T, Selzer G, Som T. Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc. Natl Acad. Sci. USA78,1421–1425 (1981).
  • Stougaard P, Molin S, Nordström K. RNAs involved in copy-number control and incompatibility of plasmid R1. Proc. Natl Acad. Sci. USA78,6008–6012 (1981).
  • Wagner EGH, Altuvia S, Romby P. Antisense RNAs in bacteria and their genetic elements. Adv. Genet.46,361–398 (2004).
  • Novick RP, Iordanescu S, Projan SJ, Kornblum J, Edelman I. pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell59,395–404 (1989).
  • 10  Kwong SM, Skurray RA, Firth N. Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation. Mol. Microbiol.51,497–509 (2004).
  • 11  del Solar G, Espinosa M. The copy number of plasmid pLS1 is regulated by two trans-acting plasmid products: the antisense RNA II and the repressor protein, RepA. Mol. Microbiol.6,83–94 (1992).
  • 12  Brantl S, Behnke D, Alonso JC. Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAM beta 1 and pSM19035. Nucleic Acids Res.18,4783–4790 (1990).
  • 13  del Solar G, Acebo P, Espinosa M. Replication control of plasmid pLS1: efficient regulation of plasmid copy number is exerted by the combined action of two plasmid components, CopG and RNAII. Mol. Microbiol.18,913–924 (1995).
  • 14  Brantl S. The copR gene product of plasmid pIP501 acts as a transcriptional repressor at the essential repR promoter. Mol. Microbiol.14,473–483 (1994).
  • 15  Brantl S, Wagner EGH. Dual function of the copR gene product of plasmid pIP501. J. Bacteriol.179,7016–7024 (1997).
  • 16  Licht A, Freede P, Brantl S. Transcriptional repressor CopR acts by inhibiting RNA polymerase binding. Microbiology157,1000–1008 (2011).
  • 17  Venkova-Canova T, Patek M, Nesvera J. Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum. J. Bacteriol.185,2402–2409 (2003).
  • 18  Okibe N, Suzuki N, Inui M, Yukawa H. Antisense-RNA-mediated plasmid copy number control in pCG1-family plasmids, pCGR2 and pCG1, in Corynebacterium glutamicum. Microbiology156,3609–3623 (2010).
  • 19  Greenfield TJ, Ehli E, Kirshenmann T, Franch T, Gerdes K, Weaver KE. The antisense RNA of the par locus of pAD1 regulates the expression of a 33 amino-acid toxic peptide by an unusual mechanism. Mol. Microbiol.37,652–660 (2000).
  • 20  Greenfield TJ, Weaver KE. Antisense RNA regulation of the pAD1 par post-segregational killing system requires interaction at the 5´ and 3´ ends of the RNAs. Mol. Microbiol.37,661–670 (2000).▪ fst/RNAI is unique as the sense and antisense RNAs have features of both cis- and trans-encoded base-pairing RNAs.
  • 21  Brantl S. Antisense RNAs in plasmids: control of replication and maintenance. Plasmid48,165–173 (2002).
  • 22  Weaver KE, Reddy SG, Brinkman CL, Patel S, Bayles KW, Endres JL. Identification and characterization of a family of toxin–antitoxin systems related to the Enterococcus faecalis plasmid pAD1 par addiction module. Microbiology155,2930–2940 (2009).
  • 23  Kwong SM, Jensen SO, Firth N. Prevalence of Fst-like toxin–antitoxin systems. Microbiology156,975–977 (2010).
  • 24  Johnson CM, Manias DA, Haemig HA et al. Direct evidence for control of the pheromone-inducible prgQ operon of Enterococcus faecalis plasmid pCF10 by a countertranscript-driven attenuation mechanism. J. Bacteriol.192,1634–1642 (2010).
  • 25  Silvaggi JM, Perkins JB, Losick R. Small untranslated RNA antitoxin in Bacillus subtilis. J. Bacteriol.187,6641–6650 (2005).
  • 26  Jahn N, Preis H, Wiedemann C, Brantl S. BsrG/SR4 from Bacillus subtilis – the first temperature-dependent type I toxin–antitoxin system. Mol. Microbiol.83,579–598 (2012).
  • 27  Saito S, Kakeshita H, Nakamura K. Novel small RNA-encoding genes in the intergenic regions of Bacillus subtilis. Gene428,2–8 (2009).
  • 28  Irnov K, Sharma CM, Vogel J, Winkler WC. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res.38,6637–6651 (2010).
  • 29  Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res.38,3743–3759 (2010).
  • 30  Eiamphungporn W, Helmann JD. Extracytoplasmic function sigma factors regulate expression of the Bacillus subtilis yabE gene via a cis-acting antisense RNA. J. Bacteriol.191,1101–1105 (2009).
  • 31  Janssen PJ, Jones DT, Woods DR. Studies on Clostridium acetobutylicumglnA promoters and antisense RNA. Mol. Microbiol.4,1575–1583 (1990).
  • 32  Fierro-Monti IP, Reid SJ, Woods DR. Differential expression of a Clostridium acetobutylicum antisense RNA: implications for regulation of glutamine synthetase. J. Bacteriol.174,7642–7647 (1992).
  • 33  André G, Even S, Putzer H et al. S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res.36,5955–5969 (2008).▪ First and so far only example of transcriptional interference as a mechanism of action of antisense RNAs.
  • 34  Bohn C, Rigoulay C, Chabelskaya S et al. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res.38,6620–6636 (2010).
  • 35  Sayed N, Jousselin A, Felden B. A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. Nat. Struct. Mol. Biol.19,105–113 (2012).
  • 36  Zemanová M, Kaderabková P, Pátek M, Knoppová M, Silar R, Nesvera J. Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol. Lett.279,195–201 (2008).
  • 37  Arnvig KB, Young DB. Identification of small RNAs in Mycobacterium tuberculosis. Mol. Microbiol.73,397–408 (2009).
  • 38  Toledo-Arana A, Dussurget A, Nikitas G et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature459,950–956 (2009).
  • 39  D’Alia D, Nieselt K, Steigele S, Müller J, Verburg I, Takano E. Noncoding RNA of glutamine synthetase I modulates antibiotic production in Streptomyces coelicolor. J. Bacteriol.192,1160–1164 (2010).
  • 40  Rasmussen S, Nielsen HB, Jarmer H. Transcriptionally active regions in the genome of Bacillus subtilis. Mol. Microbiol.73,1043–1057 (2009).
  • 41  Georg J, Hess WR. Cis-antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev.75,286–300 (2011).
  • 42  Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr. Opin. Microbiol.10,102–109 (2007).
  • 43  del Solar G, Acebo P, Espinosa M. Replication control of plasmid pLS1: the antisense RNAII and the compact RNAII region are involved in translational regulation of the initiator RepB synthesis. Mol. Microbiol.23,95–108 (1997).
  • 44  Duan K, Liu CQ, Supple S, Dunn NW. Involvement of antisense RNA in replication control of the lactococcal plasmid pND324. FEMS Microbiol. Lett.164,419–426 (1998).
  • 45  Kwong SM, Skurray RA, Firth N. Replication control of staphylococcal multiresistance plasmid pSK41: an antisense RNA mediates dual-level regulation of Rep expression. J. Bacteriol.188,4404–4412 (2006).▪ Only example of an antisense RNA that acts by translation attenuation.
  • 46  Greenfield TJ, Franch T, Gerdes K, Weaver KE. Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII, and its target, RNAI. Mol. Microbiol.42,527–537 (2001).
  • 47  Shokeen S, Greenfield TJ, Ehli EA, Rasmussen J, Perrault BE, Weaver KE. An intramolecular upstream helix ensures the stability of a toxin-encoding RNA in Enterococcus faecalis. J. Bacteriol.191,1528–1536 (2008).
  • 48  Shokeen S, Patel S, Greenfield TJ, Brinkman C, Weaver KE. Translational regulation by an intramolecular stem-loop is required for intermolecular RNA regulation of the par addiction module. J. Bacteriol.190,6076–6083 (2008).
  • 49  Brantl S, Birch-Hirschfeld E, Behnke D. RepR protein expression on plasmid pIP501 is controlled by an antisense RNA-mediated transcription attenuation mechanism. J. Bacteriol.175,4052–4061 (1993).
  • 50  Le Chatelier E, Ehrlich SD, Jannière L. Countertranscript-driven attenuation system of the pAMβ1 repE gene. Mol. Microbiol.20,1099–1112 (1996).
  • 51  Giangrossi M, Prosseda G, Tran CN, Brani A, Colonna B, Falconi M. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res.38,3362–3375 (2010).
  • 52  Brantl S, Wagner EGH. Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. EMBO J.13,3599–3607 (1994).
  • 53  Brantl S, Wagner EGH. An unusually long-lived antisense RNA in plasmid copy number control: in vivo RNAs encoded by the streptococcal plasmid pIP501. J. Mol. Biol.255,275–288 (1996).
  • 54  Shokeen S, Johnson CM, Greenfield TJ, Manias DA, Dunny GM, Weaver KE. Structural analysis of the antiQ–Qs interaction: RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation. Plasmid64,26–35 (2010).
  • 55  Chatterjee A, Johnson CM, Shu C-C et al. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation. Proc. Natl Acad. Sci USA108,9721–9726 (2011).
  • 56  Argaman L, Hershberg R, Vogel J et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol.11,941–950 (2001).
  • 57  Heidrich N, Chinali A, Gerth U, Brantl S. The small untranslated RNA SR1 from the B. subtilis genome is involved in the regulation of arginine catabolism. Mol. Microbiol.62,520–536 (2006).
  • 58  Gaballa A, Antelmann H, Aguilar C et al. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc. Natl Acad. Sci. USA105,11927–11932 (2008).
  • 59  Smaldone G, Revelles O, Gaballa A, Sauer U, Antelmann H, Helmann JD. A global investigation of the Bacillus subtilis iron-sparing response identifies major changes in metabolism. J. Bacteriol.194(10),2594–2605 (2012).
  • 60  Smaldone GT, Antelmann H, Gaballa A, Helmann JD. The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis LutABC iron–sulfur containing oxidases. J. Bacteriol.194(10),2586–2593 (2012) .
  • 61  Morfeldt E, Taylor D, von Gabain A, Arvidson S. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J.14,4569–4577 (1995).
  • 62  Boisset S, Geissmann T, Huntzinger E et al.Staphylococcus aureus RNAIII coordinately represses synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev.21,1353–1366 (2007).
  • 63  Geissmann T, Chevalier C, Cros M-J et al. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res.37,7239–7257 (2009).▪ First sRNA from Gram-positive hosts that uses a conserved sequence motif for target recognition.
  • 64  Chabelskaya S, Gaillot O, Felden B. A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog.6,e1000927 (2010).
  • 65  Mangold M, Siller M, Roppenser B et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol.53,1515–1527 (2004).
  • 66  Ramirez-Peña E, Treviño J, Liu Z, Perez N, Sumby P. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol. Microbiol.78,1332–1347 (2010).
  • 67  Roberts SA, Scott JR. RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Mol. Microbiol.66,1506–1522 (2007).
  • 68  Deltcheva E, Chylinski K, Sharma CM et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature471,602–607 (2011).▪ Reports the involvement of trans-encoded base-pairing RNAs in CRISPR RNA biogenesis.
  • 69  Acebo P, Martin-Galiano AJ, Navarro S, Zaballos A, Amblar M. Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. RNA18,530–546 (2012).
  • 70  Okumura K, Ohtani K, Hayashi H, Shimizu T. Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens. J. Bacteriol.190,7719–7727 (2008).
  • 71  Obana N, Nakamura K. A novel toxin regulator, the CPE1446–CPE1447 protein heteromeric complex, controls toxin genes in Clostridium perfringens. J. Bacteriol.193,4417–4424 (2011).
  • 72  Loh E, Dussurget O, Gripenland J et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell139,770–779 (2009).▪ Riboswitch that also acts as a trans-encoded base-pairing sRNA.
  • 73  Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Søgaard-Andersen B, Kallipolitis BH. Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA12,1–14 (2006).
  • 74  Nielsen JS, Lei LK, Ebersbach T et al. Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes. Nucleic Acids Res.38,907–919 (2009).▪ First and so far only example of the requirement of Hfq for sense/antisense RNA interactions in a Gram-positive bacterium.
  • 75  Nielsen JS, Larsen MH, Lillebaek EM et al. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes. PLoS One6(4),e19019 (2011).
  • 76  Mellin JR, Cossart P. The non-coding RNA world of the bacterial pathogen Listeria monocytogenes. RNA Biol.9(4),372–378 (2012).
  • 77  Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S. A dual-function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. Mol. Microbiol.76,990–1009 (2010).▪ First and so far only dual-function sRNA in Bacillus subtilis.
  • 78  Pichon C, Felden B. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc. Natl Acad. Sci. USA102,14249–14254 (2005).
  • 79  Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayasi H. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol. Microbiol.43,257–265 (2002).
  • 80  Vockenhuber MP, Suess B. Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region. Microbiology158,424–435 (2012).
  • 81  Heidrich N, Moll I, Brantl S. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res.35,4331–4346 (2007).
  • 82  Chevalier C, Boisset S, Romilly C et al.Staphylococcus aureus RNAIII binds to two distant regions of coa RNA to arrest translation and promote RNA degradation. PLoS Pathog.6,e1000809 (2010).
  • 83  Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F. Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA5,6668–6679 (2000).
  • 84  Huntzinger E, Boisset S, Saveanu C et al.Staphylococcus aureus RNA III and endoribonuclease III coordinately regulate spa gene expression. EMBO J.24,824–835 (2005).
  • 85  Brantl S. Small regulatory RNAs (sRNAs) – key players in prokaryotic metabolism, stress response, and virulence. In: Regulatory RNAs. Mallick B, Gosh Z (Eds). Springer Verlag, Germany, 73–109 (2012).
  • 86  Obana N, Shirahama Y, Aboe K, Nakamura K. Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5´ leader sequence. Mol. Microbiol.77,1416–1428 (2010).▪ First example of target RNA stabilization by sRNA-dependent cleavage.
  • 87  Brantl S, Wagner EGH. Antisense-RNA mediated transcriptional attenuation: an in vitro study of plasmid pT181. Mol. Microbiol.35,1469–1482 (2000).
  • 88  Wagner EGH, Brantl S. Kissing and RNA stability in antisense control of plasmid replication. Trends Biochem. Sci.23,451–454 (1998).
  • 89  Heidrich N, Brantl S. Antisense RNA-mediated transcriptional attenuation in plasmid pIP501: the simultaneous interaction between two complementary loop pairs is required for efficient inhibition by the antisense RNA. Microbiology153,420–427 (2007).
  • 90  Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat. Rev. Microbiol.9,578–589 (2011).
  • 91  Fender A, Elf J, Hampel K, Zimmermann B, Wagner EGH. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev.24,2621–2626 (2010).
  • 92  Bohn C, Rigoulay C, Bouloc P. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol.7,10 (2007).
  • 93  Liu Y, Wu N, Dong J et al. Hfq is a global regulator that controls the pathogenicity of Staphylococcus aureus. PLoS One5,e13069 (2010).
  • 94  Rochat A, Bouloc P, Yang Q, Bossi L, Figuerra-Bossi N. Lack of interchangeability of Hfq-like proteins. Biochimie doi:10.1016/j.biochi.2012.01.016 (2012) (Epub ahead of print).
  • 95  Ross JA, Wardle SJ, Haniford DB. Tn10/IS10 transposition is downregulated at the level of transposase expression by the RNA-binding protein Hfq. Mol. Microbiol.78,607–621 (2010).
  • 96  Franch T, Petersen M, Wagner EGH, Jacobsen JP, Gerdes K. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn-loop structure. J. Mol. Biol.294,1115–1125 (1999).
  • 97  Heidrich N, Brantl S. Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition by the antisense-RNA. J. Mol. Biol.333,917–929 (2003).
  • 98  Weaver KE. Emerging plasmid-encoded antisense RNA regulated systems. Curr. Opin. Microbiol.10,110–116 (2007).
  • 99  Laalami S, Putzer H. mRNA degradation and maturation in prokaryotes: the global players. Biomol. Concepts2,491–506 (2011).
  • 100  Lewis PJ, Thaker SD, Errington J. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J.19,710–718 (2000).
  • 101  Beisel CL, Storz G. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev.34,866–882 (2010).
  • 102  Vecerek B, Moll I, Bläsi U. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J.26,965–975 (2007).
  • 103  Figuera-Bossi N, Valentini M, Malleret L, Bossi L. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev.23,2004–2015 (2009).
  • 104  Licht A, Preis S, Brantl S. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in B. subtilis. Mol. Microbiol.58,189–206 (2005).
  • 105  Licht A, Brantl S. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. J. Mol. Biol.364,434–448 (2006).
  • 106  Licht A, Golbik R, Brantl S. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. J. Mol. Biol.380,17–30 (2008).
  • 107  Licht A, Brantl S. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters. J. Biol. Chem.284,30032–30038 (2009).
  • 108  Felden B, Vandenesch F, Bouloc P, Romby R. The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog.7,e1002006 (2011).
  • 109  Kreikemeyer B, Boyle MD, Buttaro BA, Heinemann M, Podbielski A. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol. Microbiol.39,392–406 (2001).
  • 110  Marx P, Nuhn M, Kovacs M, Hakenbeck R, Brückner R. Identification of genes for small non-coding RNAs that belong to the regulon of the two-component regulatory system CiaRH in Streptococcus. BMC Genomics11,661 (2010).
  • 111  Halfmann A, Kovacs M, Hakenbeck R, Brückner R. Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of 15 promoters drive expression of small non-coding RNAs. Mol. Microbiol.66,110–126 (2007).
  • 112  Tezuka T, Hara H, Ohnishi Y, Horinouchi S. Identification and gene disruption of small noncoding RNAs in Streptomyces griseus. J. Bacteriol.191,4896–4904 (2009).
  • 113  Preis H, Eckart RA, Gudipati RK, Heidrich N, Brantl S. CodY activates transcription of a small RNA in Bacillus subtilis. J. Bacteriol.191,5446–5457 (2009).
  • 114  Nielsen JS, Olsen AS, Bonde M, Valentin-Hansen P, Kallipolitis BH. Identification of a sigma B-dependent small noncoding RNA in Listeria monocytogenes. J. Bacteriol.190,6264–6270 (2008).
  • 115  Nielsen JS, Christiansen MH, Bonde M et al. Searching for small σB-regulated genes in Staphylococcus aureus. Arch. Microbiol.193,23–24 (2011).
  • 116  Silvaggi JM, Perkins JB, Losick R. Genes for small, noncoding RNAs under sporulation control in Bacillus subtilis. J. Bacteriol.188,532–541 (2006).
  • 117  Schmalisch M, Maiques E, Nikolov L et al. Small genes under sporulation control in the Bacillus subtilis genome. J. Bacteriol.192,5402–5412 (2010).
  • 118  Marchais A, Duperrier S, Durand S, Gautheret D, Stragier P. CsfG, a sporulation-specific, small non-coding RNA highly conserved in endospore formers. RNA Biol.8,358–364 (2011).
  • 119  Swiercz JP, Hindra, Bobek J et al. Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res.36,7240–7251 (2008).
  • 120  Grewal SI. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev.20,134–141 (2011).
  • 121  Montero Llopis P, Jackson AF, Sliusarenko O. Spatial organization of the flow of genetic information in bacteria. Nature466,77–81 (2010).
  • 122  Lee M, Zhang S, Saha S, Santa Anna S, Jiang C, Perkins J. RNA expression analysis using an antisense Bacillus subtilis genome array. J. Bacteriol.183,7371–7380 (2001).
  • 123  Nicolas P, Mäder U, Dervyn E et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science335,1103–1106 (2012).
  • 124  Marchais A, Naville M, Bohn C, Bouloc P, Gautheret D. Single-pass classification of all noncoding sequences in a bacterial genome using phylogenetic profiles. Genome Res.19,1084–1092 (2009).
  • 125  Beaume M, Hernandez D, Farinelli L et al. Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS One5,e10725 (2010).
  • 126  Abu-Qatouseh LF, Chinni SV, Seggewiß J et al. Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J. Mol. Med.88,565–575 (2010).
  • 127  Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res.35,962–974 (2007).
  • 128  Oliver HF, Orsi RH, Ponnala L et al. Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics120,641 (2009).
  • 129  Mraheil MA, Billion A, Mohamed W et al. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res.39,4235–4248 (2011).
  • 130  Perez N, Treviño J, Liu Z, Ho SC, Babitzke P, Sumby P. A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PLoS One4,e7668 (2009).
  • 131  Tsui H-CT, Mukherjee D, Ray VA, Sham LT, Feig AL, Winkler ME. Identification and characterization of non-coding small RNAs in Streptococcus pneumoniae serotype 2 strain D39. J. Bacteriol.192,264–279 (2009).
  • 132  Kumar R, Shah P, Swiatlo E, Burgess S, Lawrence M, Nanduri B. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays. BMC Genomics11,350 (2010).
  • 133  Fouquier d’Herouel A, Wessner F, Halpern D et al. A simple and efficient method to search for selected primary transcripts: non-coding and antisense RNAs in the human pathogen Enterococcus faecalis. Nucleic Acids Res. doi:10.1093/nar/gkr012 (2011) (Epub ahead of print).
  • 134  Shioya K, Michaux C, Kuenne C et al. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583. PLoS One6,e23948 (2011).
  • 135  Vockenhuber MP, Sharma CM, Statt MG et al. Deep sequencing-based identification of small noncoding RNAs in Streptomyces coelicolor. RNA Biol.8,468–477 (2011).