We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea

    Magnus Unemo

    * Author for correspondence

    WHO Collaborating Centre for Gonorrhoea & Other STIs, National Reference Laboratory for Pathogenic Neisseria, Örebro University Hospital, SE-701 85 Örebro, Sweden.

    &
    Robert A Nicholas

    Departments of Pharmacology & Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

    Published Online:https://doi.org/10.2217/fmb.12.117

    The new superbug Neisseria gonorrhoeae has retained resistance to antimicrobials previously recommended for first-line treatment and has now demonstrated its capacity to develop resistance to the extended-spectrum cephalosporin, ceftriaxone, the last remaining option for first-line empiric treatment of gonorrhea. An era of untreatable gonorrhea may be approaching, which represents an exceedingly serious public health problem. Herein, we review the evolution, origin and spread of antimicrobial resistance and resistance determinants (with a focus on extended-spectrum cephalosporins) in N. gonorrhoeae, detail the current situation regarding verified treatment failures with extended-spectrum cephalosporins and future treatment options, and highlight essential actions to meet the large public health challenge that arises with the possible emergence of untreatable gonorrhea. Essential actions include: implementing action/response plans globally and nationally; enhancing surveillance of gonococcal antimicrobial resistance, treatment failures and antimicrobial use/misuse; and improving prevention, early diagnosis and treatment of gonorrhea. Novel treatment strategies, antimicrobials (or other compounds) and, ideally, a vaccine must be developed.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Tapsall JW, Ndowa F, Lewis DA, Unemo M. Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev. Anti. Infect. Ther.7,821–834 (2009).▪ Comprehensive review describing initiatives by the WHO to enhance global antimicrobial resistance surveillance and meet the public health challenges posed by international spread of multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae.
    • Cohen MS, Hoffman IF, Royce RA et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. Lancet349,1868–1873 (1997).
    • Barry PM, Klausner JD. The use of cephalosporins for gonorrhea: the impending problem of resistance. Expert Opin. Pharmacother.10,555–577 (2009).
    • Bolan GA, Sparling PF, Wasserheit JN. The emerging threat of untreatable gonococcal infection. N. Engl. J. Med.366,485–487 (2012).
    • Centers for Disease Control and Prevention (CDC). Cephalosporin susceptibility among Neisseria gonorrhoeae isolates – United States, 2000–2010. MMWR Morb. Mortal. Wkly Rep.60,873–877 (2011).
    • Chisholm SA, Alexander S, Desouza-Thomas L et al. Emergence of a Neisseria gonorrhoeae clone showing decreased susceptibility to cefixime in England and Wales. J. Antimicrob. Chemother.66,2509–2512 (2011).
    • Cole MJ, Unemo M, Hoffmann S, Chisholm SA, Ison CA, van de Laar MJ. The European gonococcal antimicrobial surveillance programme, 2009. Euro. Surveill.16(42),19995 (2011).
    • Golparian D, Hellmark B, Fredlund H, Unemo M. Emergence, spread and characteristics of Neisseria gonorrhoeae isolates with in vitro decreased susceptibility and resistance to extended-spectrum cephalosporins in Sweden. Sex. Transm. Infect.86,454–460 (2010).
    • Kirkcaldy RD, Ballard RC, Dowell D. Gonococcal resistance: are cephalosporins next? Curr. Infect. Dis. Rep.13,196–204 (2011).
    • 10  Kubanova A, Frigo N, Kubanov A et al. The Russian gonococcal antimicrobial susceptibility programme (RU-GASP) – national resistance prevalence in 2007 and 2008, and trends during 2005–2008. Euro. Surveill.15(14),19533 (2010).
    • 11  Lewis DA. The gonococcus fights back: is this time a knock out? Sex. Transm. Infect.86,415–421 (2010).
    • 12  Lewis DA, Lukehart SA. Antimicrobial resistance in Neisseria gonorrhoeae and Treponema pallidum: evolution, therapeutic challenges and the need to strengthen global surveillance. Sex. Transm. Infect.87(Suppl. 2),ii39–ii43 (2011).
    • 13  Martin I, Jayaraman G, Wong T, Liu G, Gilmour M. Canadian Public Health Laboratory Network. Trends in antimicrobial resistance in Neisseria gonorrhoeae isolated in Canada: 2000–2009. Sex. Transm. Dis.38,892–898 (2011).
    • 14  Newman LM, Moran JS, Workowski KA. Update on the management of gonorrhea in adults in the United States. Clin. Infect. Dis.44(Suppl.3),S84–S101 (2007).
    • 15  Tanaka M, Koga Y, Nakayama H et al. Antibiotic-resistant phenotypes and genotypes of Neisseria gonorrhoeae isolates in Japan: identification of strain clusters with multidrug-resistant phenotypes. Sex. Transm. Dis.38,871–875 (2011).
    • 16  Tanaka M, Shimojima M, Saika T et al. Nationwide antimicrobial susceptibility survey of Neisseria gonorrhoeae isolates in Japan. Kansenshogaku Zasshi.85,360–365 (2011).
    • 17  Unemo M, Shafer WM. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann. NY Acad. Sci.1230,E19–E28 (2011).
    • 18  WHO Western Pacific and South East Asian Gonococcal Antimicrobial Surveillance Programmes; Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the WHO Western Pacific and South East Asian Regions, 2010. Commun. Dis. Intell.36,95–100 (2012).
    • 19  Workowski KA, Berman S. Sexually transmitted diseases treatment guidelines, 2010. MMWR Recomm. Rep.59(RR-12),1–110 (2010).
    • 20  Stoltey JE, Barry PM. The use of cephalosporins for gonorrhea: an update on the rising problem of resistance. Expert Opin. Pharmacother.13,1411–1420 (2012).▪ Comprehensive updated review emphasizing many important actions needed to meet the challenge of multidrug-resistant gonorrhea.
    • 21  Deguchi T, Yasuda M, Yokoi S et al. Treatment of uncomplicated gonococcal urethritis by double-dosing of 200 mg cefixime at a 6-h interval. J. Infect. Chemother.9,35–39 (2003).
    • 22  Ison CA, Hussey J, Sankar KN, Evans J, Alexander S. Gonorrhoea treatment failures to cefixime and azithromycin in England, 2010. Euro. Surveill.16(14),19833 (2011).
    • 23  Ohnishi M, Golparian D, Shimuta K et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother.55,3538–3545 (2011).▪▪ Detailed phenotypic and genetic characterization of the first N. gonorrhoeae strain with high-level ceftriaxone resistance (identified in Japan).
    • 24  Unemo M, Golparian D, Hestner A. Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro. Surveill.16(6),19792 (2011).
    • 25  Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother.56,1273–1280 (2012).▪ Detailed phenotypic and genetic characterization of the second N. gonorrhoeae strain with high-level ceftriaxone resistance (identified in France).
    • 26  Unemo M, Golparian D, Stary A, Eigentler A. First Neisseria gonorrhoeae strain with resistance to cefixime causing gonorrhoea treatment failure in Austria, 2011. Euro. Surveill.16(43),19998 (2011).
    • 27  Unemo M, Golparian D, Syversen G, Vestrheim DF, Moi H. Two cases of verified clinical failures using internationally recommended first-line cefixime for gonorrhoea treatment, Norway, 2010. Euro. Surveill.15(47),19721 (2010).
    • 28  Unemo M, Golparian D, Potočnik M, Jeverica S. Treatment failure of pharyngeal gonorrhoea with internationally recommended first-line ceftriaxone verified in Slovenia, September 2011. Euro. Surveill.17(25),20200 (2012).
    • 29  Tapsall J, Read P, Carmody C et al. Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods. J. Med. Microbiol.58(Pt 5),683–687 (2009).
    • 30  Yokoi S, Deguchi T, Ozawa T et al. Threat to cefixime treatment of gonorrhea. Emerg. Infect. Dis.13,1275–1277 (2007).
    • 31  Cámara J, Serra J, Ayats J et al. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J. Antimicrob. Chemother.67,1858–1860 (2012).
    • 32  Whiley DM, Goire N, Lahra MM et al. The ticking time bomb: escalating antibiotic resistance in Neisseria gonorrhoeae is a public health disaster in waiting. J. Antimicrob. Chemother.67,2059–2061 (2012).
    • 33  Ndowa F, Lusti-Narasimhan M, Unemo M. The serious threat of multidrug-resistant and untreatable gonorrhoea: the pressing need for global action to control the spread of antimicrobial resistance, and mitigate the impact on sexual and reproductive health. Sex. Transm. Infect.88,317–318 (2012).
    • 34  Furuya R, Onoye Y, Kanayama A et al. Antimicrobial resistance in clinical isolates of Neisseria subflava from the oral cavities of a Japanese population. J. Infect. Chemother.13,302–304 (2007).
    • 35  Saika T, Nishiyama T, Kanayama A et al. Comparison of Neisseria gonorrhoeae isolates from the genital tract and pharynx of two gonorrhea patients. J. Infect. Chemother.7,175–179 (2001).
    • 36  Tanaka M, Nakayama H, Huruya K et al. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int. J. Antimicrob. Agents27,20–26 (2006).
    • 37  Ohnishi M, Watanabe Y, Ono E et al. Spreading of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob. Agents Chemother.54,1060–1067 (2010).
    • 38  Dillon JA, Parti RP. Fluoroquinolone resistance in Neisseria gonorrhoeae: fitness cost or benefit? J. Infect. Dis.205,1775–1777 (2012).
    • 39  Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder L, Shafer WM. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun.71,5576–5582 (2003).
    • 40  Warner DM, Folster JP, Shafer WM, Jerse AE. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis.196,1804–1812 (2007).
    • 41  Warner DM, Shafer WM, Jerse AE. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol.70,462–478 (2008).
    • 42  Johnson PJ, Stringer VA, Shafer WM. Off-target gene regulation mediated by transcriptional repressors of antimicrobial efflux pump genes in Neisseria gonorrhoeae. Antimicrob. Agents Chemother.55,2559–2565 (2011).
    • 43  Kunz AN, Begum AA, Wu H. Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J. Infect. Dis.205,1821–1829 (2012).
    • 44  Tapsall J, Whiley D, Sloots T. Applications of molecular testing in clinical laboratories for the diagnosis and control of gonorrhea. Future Microbiol.1,317–324 (2006).
    • 45  Tapsall JW, Limnios EA, Murphy DM; Australian Gonococcal Surveillance Programme. Analysis of trends in antimicrobial resistance in Neisseria gonorrhoeae isolated in Australia 1997–2006. J. Antimicrob. Chemother.61,150–155 (2008).
    • 46  Morris SR, Knapp JS, Moore DF et al. Using strain typing to characterise a fluoroquinolone-resistant Neisseria gonorrhoeae transmission network in southern California. Sex. Transm. Infect.84,290–291 (2008).
    • 47  Tapsall J. Antibiotic resistance in Neisseria gonorrhoeae is diminishing available treatment for gonorrhea: some possible remedies. Exp. Rev. Anti Infect. Ther.4,619–628 (2006).
    • 48  Akasaka S, Muratani T, Yamada Y, Inatomi H, Takahashi K, Matsumoto T. Emergence of cephem- and aztreonam-high-resistant Neisseria gonorrhoeae that does not produce beta-lactamase. J. Infect. Chemother.7,49–50 (2001).
    • 49  Tanaka M, Nakayama H, Tunoe H et al. A remarkable reduction in the susceptibility of Neisseria gonorrhoeae isolates to cephems and the selection of antibiotic regimens for the single-dose treatment of gonococcal infection in Japan. J. Infect. Chemother.8,81–86 (2002).
    • 50  Ito M, Yasuda M, Yokoi S et al. Remarkable increase in central Japan in 2001–2002 of Neisseria gonorrhoeae isolates with decreased susceptibility to penicillin, tetracycline, oral cephalosporins, and fluoroquinolones. Antimicrob. Agents Chemother.48,3185–3187 (2004).
    • 51  Chisholm SA, Mouton JW, Lewis DA, Nichols T, Ison CA, Livermore DM. Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J. Antimicrob. Chemother.65,2141–2148 (2010).
    • 52  Takahashi S, Kurimura Y, Hashimoto J et al. Antimicrobial susceptibility and penicillin-binding protein 1 and 2 mutations in Neisseria gonorrhoeae isolated from male urethritis in Sapporo, Japan. J. Infect. Chemother. doi:10.1007/s10156-012-0450-3 (2012) (Epub ahead of print).
    • 53  Lo JY, Ho KM, Leung AO et al. Ceftibuten resistance and treatment failure of Neisseria gonorrhoeae infection. Antimicrob. Agents Chemother.52,3564–3567 (2008).
    • 54  Martin I, Sawatzky P, Allen V et al. Emergence and characterization of Neisseria gonorrhoeae isolates with decreased susceptibilities to ceftriaxone and cefixime in Canada: 2001–2010. Sex. Transm. Dis.39,316–323 (2012).
    • 55  Li SY. Global transmission of multiple-drug resistant Neisseria gonorrhoeae strains refractive to cephalosporin treatment. J. Formos. Med. Assoc.111,463–464 (2012).
    • 56  Starnino S, Galarza P, Carvallo ME et al. Retrospective analysis of antimicrobial susceptibility trends (2000–2009) in Neisseria gonorrhoeae isolates from countries in Latin America and the Caribbean shows evolving resistance to ciprofloxacin, azithromycin and decreased susceptibility to ceftriaxone. Sex. Transm. Dis.39,813–821 (2012).
    • 57  Su X, Jiang F, Qimuge, Dai X, Sun H, Ye S. Surveillance of antimicrobial susceptibilities in Neisseria gonorrhoeae in Nanjing, China, 1999–2006. Sex. Transm. Dis.34,995–999 (2007).
    • 58  Liao M, Gu WM, Yang Y, Dillon JA. Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone. J. Antimicrob. Chemother.66,1016–1023 (2011).
    • 59  Unemo M, Shipitsyna E, Domeika M; on behalf of the Eastern European Sexual and Reproductive Health (EE SRH) Network Antimicrobial Resistance Group. Recommended antimicrobial treatment of uncomplicated gonorrhoea in 2009 in 11 East European countries: implementation of a Neisseria gonorrhoeae antimicrobial susceptibility programme in this region is crucial. Sex. Transm. Infect.86,442–444 (2010).
    • 60  Unemo M, Shipitsyna E, Domeika M; the Eastern European Sexual and Reproductive Health (EE SRH) Network Antimicrobial Resistance Group. Gonorrhoea surveillance, laboratory diagnosis and antimicrobial susceptibility testing of Neisseria gonorrhoeae in 11 countries of the eastern part of the WHO European region. APMIS119,643–649 (2011).
    • 61  Dillon JA. Sustainable antimicrobial surveillance programs essential for controlling Neisseria gonorrhoeae superbug. Sex. Transm. Dis.38,899–901 (2011).
    • 62  Moran JS, Levine WC. Drugs of choice in the treatment of uncomplicated gonococcal infection. Clin. Infect. Dis.20(Suppl. 1),S47–S65 (1995).
    • 63  Moran JS. Treating uncomplicated Neisseria gonorrhoeae infections: is the anatomic site of infection important? Sex. Transm. Dis.22,39–47 (1995).
    • 64  Bignell C, Fitzgerald M; Guideline Development Group. UK national guideline for the management of gonorrhoea in adults, 2011. Int. J. STD AIDS22,541–547 (2011).▪▪ Updated guidelines for the management of gonorrhea in adults in the UK.
    • 65  Ohnishi M, Saika T, Hoshina S et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg. Infect. Dis.17(1),148–149 (2010).
    • 66  Chisholm S, Unemo M, Quaye N-N et al. Molecular epidemiological typing within the European gonococcal antimicrobial resistance surveillance programme (EURO-GASP) reveals predominance of a multi-drug resistant clone. Presented at: 18th International Pathogenic Neisseria Conference. Wurzburg, Germany, 9–14 September 2012.
    • 67  Buono S, Wu A, Hess DC et al. Using the Neisseria gonorrhoeae multiantigen sequence-typing method to assess strain diversity and antibiotic resistance in San Francisco, California. Microb. Drug Resist.18,510–517 (2012).
    • 68  Heymans R, Bruisten SM, Golparian D, Unemo M, de Vries HJ, van Dam AP. Clonally related Neisseria gonorrhoeae isolates with decreased susceptibility to the extended-spectrum cephalosporin cefotaxime in Amsterdam, The Netherlands. Antimicrob. Agents Chemother.56,1516–1522 (2012).
    • 69  Huang CT, Yen MY, Wong WW et al. Characteristics and dissemination of mosaic penicillin-binding protein 2-harboring multidrug-resistant Neisseria gonorrhoeae isolates with reduced cephalosporin susceptibility in northern Taiwan. Antimicrob. Agents Chemother.54,4893–4895 (2010).
    • 70  Mavroidi A, Tzelepi E, Siatravani E, Godoy D, Miriagou V, Spratt BG. Analysis of emergence of quinolone-resistant gonococci in Greece by combined use of Neisseria gonorrhoeae multiantigen sequence typing and multilocus sequence typing. J. Clin. Microbiol.49,1196–1201 (2011).
    • 71  Pandori M, Barry PM, Wu A et al. Mosaic penicillin-binding protein 2 in Neisseria gonorrhoeae isolates collected in 2008 in San Francisco, California. Antimicrob. Agents Chemother.53,4032–4034 (2009).
    • 72  Tapsall JW, Ray S, Limnios A. Characteristics and population dynamics of mosaic penA allele-containing Neisseria gonorrhoeae isolates collected in Sydney, Australia, in 2007–2008. Antimicrob. Agents Chemother.54,554–556 (2010).
    • 73  Hess D, Wu A, Golparian D et al. Genome sequencing of a Neisseria gonorrhoeae isolate of a successful international clone with decreased susceptibility/resistance to extended-spectrum cephalosporins. Antimicrob. Agents Chemother.56(11),5633–5641 (2012).
    • 74  Allen VG, Farrell DJ, Rebbapragada A et al. Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob. Agents Chemother.55,703–712 (2011).
    • 75  Ameyama S, Onodera S, Takahata M et al. Mosaic-like structure of penicillin-binding protein 2 gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob. Agents Chemother.46,3744–3749 (2002).
    • 76  Ito M, Deguchi T, Mizutani KS et al. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan. Antimicrob. Agents Chemother.49,137–143 (2005).
    • 77  Lee SG, Lee SG, Lee H et al. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J. Antimicrob. Chemother.65,669–675 (2010).
    • 78  Lindberg R, Fredlund H, Nicholas R, Unemo M. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob. Agents Chemother.51,2117–2122 (2007).
    • 79  Osaka K, Takakura T, Narukawa K et al. Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone. J. Infect. Chemother.14,195–203 (2008).
    • 80  Takahata S, Senju N, Osaki Y, Yoshida T, Ida T. Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother.50,3638–3645 (2006).
    • 81  Tomberg J, Unemo M, Davies C, Nicholas RA. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry49,8062–8070 (2010).▪▪ Detailed analysis and verification of amino acid alterations in PBP2 that are important for decreased susceptibility to expanded-spectrum cephalosporins in N. gonorrhoeae.
    • 82  Unemo M, Fasth O, Fredlund H, Limnios A, Tapsall JW. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J. Antimicrob. Chemother.63,1142–1151 (2009).
    • 83  Whiley DM, Limnios A, Ray S, Sloots TP, Tapsall JW. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob. Agents Chemother.51,3111–3116 (2007).
    • 84  Whiley DM, Goire N, Lambert SB et al. Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2. J. Antimicrob. Chemother.65,1615–1618 (2010).
    • 85  Whiley DM, Goire N, Lambert SB, Nissen MD, Sloots TP, Tapsall JW. Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is spread internationally by genetically distinct gonococcal populations. J. Antimicrob.Chemother.66,1186–1187 (2011).
    • 86  Zhao S, Duncan M, Tomberg J, Davies C, Unemo M, Nicholas RA. Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob. Agents Chemother.53,3744–3751 (2009).▪ Detailed analysis of the effects of penA mosaic allele, and synergy with mtrR and penB, on the susceptibility to extended-spectrum cephalosporins in N. gonorrhoeae.
    • 87  Ochiai S, Sekiguchi S, Hayashi A et al. Decreased affinity of mosaic-structure recombinant penicillin-binding 2 for oral cephalosporins in Neisseria gonorrhoeae. J. Antimicrob. Chemother.60,54–60 (2007).
    • 88  Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology141,611–622 (1995).
    • 89  Shafer WM, Folster JP. Towards an understanding of chromosomally mediated penicillin resistance in Neisseria gonorrhoeae: evidence for a porin-efflux pump collaboration. J. Bacteriol.188,2297–2299 (2006).
    • 90  Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J. Bacteriol.184,5619–5624 (2002).
    • 91  Zarantonelli L, Borthagaray G, Lee EH, Shafer WM. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob. Agents Chemother.43,2468–2472 (1999).
    • 92  Johnson SR, Sandul AL, Parekh M et al. Mutations causing in vitro resistance to azithromycin in Neisseria gonorrhoeae. Int. J. Antimicrob. Agents21,414–419 (2003).
    • 93  Ohneck EA, Zalucki YM, Johnson PJ et al. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. MBio20, 2(5) e00187–e00111 (2011).
    • 94  Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob. Agents Chemother.46,2811–2820 (2002).
    • 95  Olesky M, Zhao S, Rosenberg RL, Nicholas RA. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J. Bacteriol.188,2300–2308 (2006).
    • 96  Ropp PA, Hu M, Olesky M, Nicholas RA. Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother.46,769–777 (2002).
    • 97  Whiley DM, Jacobsson S, Tapsall JW et al. Alterations of the pilQ gene in Neisseria gonorrhoeae are unlikely contributors to decreased susceptibility to ceftriaxone and cefixime in clinical gonococcal strains. J. Antimicrob. Chemother.65,2543–2547 (2010).
    • 98  Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol. Microbiol.57,1238–1251 (2005).
    • 99  Helm RA, Barnhart MM, Seifert HS. pilQ missense mutations have diverse effects on PilQ multimer formation, piliation, and pilus function in Neisseria gonorrhoeae. J. Bacteriol.189,3198–3207 (2007).
    • 100  Nakayama SI, Tribuddharat C, Prombhul S et al. Molecular analyses of TEM genes and their corresponding penicillinase-producing Neisseria gonorrhoeae isolates in Bangkok, Thailand. Antimicrob. Agents Chemother.56,916–920 (2012).
    • 101  Tapsall JW. Implications of current recommendations for third-generation cephalosporin use in the WHO Western Pacific Region following the emergence of multiresistant gonococci. Sex. Transm. Infect.85,256–258 (2009).
    • 102  Bignell C. 2009 European (IUSTI/WHO) guideline on the diagnosis and treatment of gonorrhoea in adults. Int. J. STD AIDS20,453–457 (2009).
    • 103  Japanese Society of Sexually Transmitted Infection. Gonococcal infection. Sexually transmitted infections, diagnosis and treatment guidelines 2011. Jpn J. Sex. Transm. Dis.22(Suppl. 1),52–59 (2011).
    • 104  Muratani T, Inatomi H, Ando Y, Kawai S, Akasaka S, Matsumoto T. Single dose 1 g ceftriaxone for urogenital and pharyngeal infection caused by Neisseria gonorrhoeae. Int. J. Urol.15,837–842 (2008).
    • 105  Handsfield HH, McCormack WM, Hook EW III et al. A comparison of single-dose cefixime with ceftriaxone as treatment for uncomplicated gonorrhea. The Gonorrhea Treatment Study Group. N. Engl. J. Med.325,1337–1341 (1991).
    • 106  Centers for Disease Control and Prevention (CDC). Update to CDC’s Sexually Transmitted Diseases Treatment Guidelines, 2010: oral cephalosporins no longer a recommended treatment for gonococcal infections. MMWR Morb. Mortal. Wkly Rep.61,590–594 (2012).
    • 107  Furuya R, Nakayama H, Kanayama A et al.In vitro synergistic effects of double combinations of beta-lactams and azithromycin against clinical isolates of Neisseria gonorrhoeae. J. Infect. Chemother.12,172–176 (2006).
    • 108  Sathia L, Ellis B, Phillip S et al. Pharyngeal gonorrhoea – is dual therapy the way forward? Int. J. STD AIDS18,647–648 (2007).
    • 109  Palmer HM, Young H, Winter A, Dave J. Emergence and spread of azithromycin-resistant Neisseria gonorrhoeae in Scotland. J. Antimicrob. Chemother.62,490–494 (2008).
    • 110  Chisholm SA, Dave J, Ison CA. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob. Agents Chemother.54,3812–3816 (2010).
    • 111  Starnino S, Stefanelli P, Neisseria gonorrhoeae Italian Study Group I. Azithromycin-resistant Neisseria gonorrhoeae strains recently isolated in Italy. J. Antimicrob. Chemother.63,1200–1204 (2009).
    • 112  Galarza PG, Abad R, Canigia LF et al. New mutation in 23S rRNA gene associated with high level of azithromycin resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother.54,1652–1653 (2010).
    • 113  Katz AR, Komeya AY, Soge OO et al.Neisseria gonorrhoeae with high-level resistance to azithromycin: case report of the first isolate identified in the United States. Clin. Infect. Dis.54,841–843 (2012).
    • 114  Boslego JW, Tramont EC, Takafuji ET et al. Effect of spectinomycin use on the prevalence of spectinomycin-resistant and penicillinase-producing Neisseria gonorrhoeae. N. Engl. J. Med.317,272–278 (1987).
    • 115  Discontinuation of spectinomycin. Morbidity and Mortality Weekly Report, 7 April (2006).
    • 116  Brown LB, Krysiak R, Kamanga G et al.Neisseria gonorrhoeae antimicrobial susceptibility in Lilongwe, Malawi, 2007. Sex. Transm. Dis.37,169–172 (2010).
    • 117  Ross JD, Lewis DA. Cephalosporin resistant Neisseria gonorrhoeae: time to consider gentamicin? Sex. Transm. Infect.88,6–8 (2012).
    • 118  Chisholm SA, Quaye N, Cole MJ et al. An evaluation of gentamicin susceptibility of Neisseria gonorrhoeae isolates in Europe. J. Antimicrob. Chemother.66,592–595 (2011).
    • 119  Dowell D, Kirkcaldy RD. Effectiveness of gentamicin for gonorrhoea treatment: systematic review and meta-analysis. Sex. Transm. Infect. doi:10.1136/sextrans -2012-050604 (2012) (Epub ahead of print).
    • 120  Golparian D, Fernandes P, Ohnishi M, Jensen JS, Unemo M. In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains including those with various high-level antimicrobial resistance - potential treatment option for gonorrhea? Antimicrob. Agents Chemother.56,2739–2742 (2012).
    • 121  Llano-Sotelo B, Dunkle J, Klepacki D et al. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother.54,4961–4970 (2010).
    • 122  Still JG, Schranz J, Degenhardt TP et al. Pharmacokinetics of solithromycin (CEM-101) after single or multiple oral doses and effects of food on single-dose bioavailability in healthy adult subjects. Antimicrob. Agents Chemother.55,1997–2003 (2011).
    • 123  Roblin PM, Kohlhoff SA, Parker C, Hammerschlag MR. In vitro activity of CEM-101, a new fluoroketolide antibiotic, against Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. Antimicrob. Agents Chemother.54,1358–1359 (2010).
    • 124  Waites KB, Crabb DM, Duffy LB. Comparative in vitro susceptibilities of human mycoplasmas and ureaplasmas to a new investigational ketolide, CEM-101. Antimicrob. Agents Chemother.53,2139–2141 (2009).
    • 125  Unemo M, Golparian D, Limnios A et al.In vitro activity of ertapenem vs. ceftriaxone against Neisseria gonorrhoeae isolates with highly diverse ceftriaxone MIC values and effects of ceftriaxone resistance determinants – ertapenem for treatment of gonorrhea? Antimicrob. Agents Chemother.56,3603–3609 (2012).
    • 126  Burkhardt O, Derendorf H, Welte T. Ertapenem: the new carbapenem 5 years after first FDA licensing for clinical practice. Expert Opin. Pharmacother.8,237–256 (2007).
    • 127  Congeni BL. Ertapenem. Expert Opin. Pharmacother.11,669–672 (2010).
    • 128  Deshpande LM, Gales AC, Jones RN. GAR-936 (9-t-butylglycylamidominocycline) susceptibility test development for streptococci, Haemophilus influenzae and Neisseria gonorrhoeae: preliminary guidelines and interpretive criteria. Int. J. Antimicrob. Agents18,29–35 (2001).
    • 129  Falagas ME, Karageorgopoulos DE, Dimopoulos G. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of tigecycline. Curr. Drug Metab.10,13–21 (2009).
    • 130  Nix DE, Matthias KR. Should tigecycline be considered for urinary tract infections? A pharmacokinetic re-evaluation. J. Antimicrob. Chemother.65,1311–1312 (2010).
    • 131  Alexander BT, Marschall J, Tibbetts RJ, Neuner EA, Dunne WM Jr, Ritchie DJ. Treatment and clinical outcomes of urinary tract infections caused by KPC-producing Enterobacteriaceae in a retrospective cohort. Clin. Ther.34,1314–1323 (2012).
    • 132  Novak R. Are pleuromutilin antibiotics finally fit for human use? Ann. NY Acad. Sci.1241,71–81 (2011).
    • 133  Novak R, Shlaes DM. The pleuromutilin antibiotics: a new class for human use. Curr. Opin. Investig. Drugs11,182–191 (2010).
    • 134  Bradbury BJ, Pucci MJ. Recent advances in bacterial topoisomerase inhibitors. Curr. Opin. Pharmacol.8,574–581 (2008).
    • 135  Then RL, Sahl HG. Anti-infective strategies of the future: is there room for species-specific antibacterial agents? Curr. Pharm. Des.16,555–566 (2010).
    • 136  Golparian D, Shafer M, Ohnishi M, Unemo M. Inactivation of the MtrCDE, MacAB, and NorM efflux pumps in Neisseria gonorrhoeae strains with clinical resistance to extended-spectrum cephalosporins make them susceptible to several antimicrobials. Presented at: 18th International Pathogenic Neisseria Conference. Wurzburg, Germany, 9–14 September 2012.
    • 137  Swanson S, Lee C-J, Liang X, Toone E, Zhou P, Nicholas R. LpxC inhibitors as novel therapeutics for treatment of antibiotic-resistant Neisseria gonorrhoeae. Presented at: 18th International Pathogenic Neisseria Conference. Wurzburg, Germany, 9–14 September 2012.
    • 138  Bucki R, Leszczyńska K, Namiot A, Sokołowski W. Cathelicidin LL-37: a multitask antimicrobial peptide. Arch. Immunol. Ther. Exp. (Warsz.)58,15–25 (2010).
    • 139  Wetzler LM. The development of a gonococcal vaccine: fact or fiction? Int. J. STD AIDS12(Suppl. 2),12 (2001).
    • 140  Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. Vaccines for gonorrhea: can we rise to the challenge. Front. Microbiol.2,124 (2011).
    • 141  Hadad R, Jacobsson S, Pizza M et al. Novel meningococcal 4CMenB vaccine antigens – prevalence and polymorphisms of the encoding genes in Neisseria gonorrhoeae. APMIS120,750–760 (2012).
    • 142  Hobbs MM, Sparling PF, Cohen MS, Shafer WM, Deal CD, Jerse AE. Experimental gonococcal infection in male volunteers: cumulative experience with Neisseria gonorrhoeae strains FA1090 and MS11mkC. Front. Microbiol.2,123 (2011).
    • 143  Guiliani MM, Adu-Bobie J, Comanducci M et al. A universal vaccine for serogroup B meningococcus. Proc. Natl Acad. Sci. USA103,10834–10839 (2006).
    • 144  Borges O, Lebre F, Bento D, Borchard G, Junginger HE. Mucosal vaccines: recent progress in understanding the natural barriers. Pharm. Res.27,211–223 (2010).
    • 145  Goire N, Sloots TP, Nissen MD, Whiley DM. Protocol for the molecular detection of antibiotic resistance mechanisms in Neisseria gonorrhoeae. Methods Mol. Biol.903,319–328 (2012).
    • 146  Unemo M, Olcén P, Fredlund H, Thulin S. Real-time PCR and subsequent pyrosequencing for screening of penA mosaic alleles and prediction of reduced susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae. APMIS116,1004–1008 (2008).
    • 147  Whiley SM, Bates J, Limnios A, Nissen MD, Tapsall J, Sloots TP. Use of a novel screening PCR indicates presence of Neisseria gonorrhoeae with a mosaic penA gene sequence in Australia. Pathology39,445–446 (2007).
    • 148  Ochiai S, Ishiko H, Yasuda M, Deguchi T. Rapid detection of the mosaic structure of the Neisseria gonorrhoeaepenA gene, which is associated with decreased susceptibilities to oral cephalosporins. J. Clin. Microbiol.46,1804–1810 (2008).
    • 149  Goire N, Ohnishi M, Limnios AE et al. Enhanced gonococcal antimicrobial surveillance in the era of ceftriaxone resistance: a real-time PCR assay for direct detection of the Neisseria gonorrhoeae H041 strain. J. Antimicrob. Chemother.67,902–905 (2012).
    • 150  Unemo M, Dillon JA. Review and international recommendation of methods for typing Neisseria gonorrhoeae isolates and their implications for improved knowledge of gonococcal epidemiology, treatment, and biology. Clin. Microbiol. Rev.24,447–458 (2011).
    • 201  WHO. Global incidence and prevalence of selected curable sexually transmitted infections – 2008. www.who.int/reproductivehealth/publications/rtis/2008_STI_estimates.pdf (Accessed 6 October 2012)
    • 202  WHO, Department of Reproductive Health and Research. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. www.who.int/reproductivehealth/publications/rtis/9789241503501 (Accessed 6 October 2012)▪▪ WHO global action plan describing essential actions to control the spread and impact of gonococcal antimicrobial resistance and possible emergence of untreatable gonorrhea.
    • 203  European Centre for Disease Prevention and Control. Response plan to control and manage the threat of multidrug-resistant gonorrhoea in Europe. www.ecdc.europa.eu/en/publications/Publications/1206-ECDC-MDR-gonorrhoea-response-plan.pdf (Accessed 6 October 2012)
    • 204  Centers for Disease Control and Prevention. Cephalosporin-resistant Neisseria gonorrhoeae public health response plan (2012). www.cdc.gov/std/gonorrhea/default.htm (Accessed 6 October 2012)
    • 205  European Centre for Disease Prevention and Control. Gonococcal antimicrobial susceptibility surveillance in Europe – 2010. www.ecdc.europa.eu/en/publications/Publications/1206-Gonococcal-AMR.pdf (Accessed 6 October 2012)
    • 206  NG-MAST. Query global sequence and ST database. www.ng-mast.net (Accessed 26 October 2012)
    • 207  WHO. Strategies and laboratory methods for strengthening surveillance of sexually transmitted infections. www.who.int/iris/bitstream/10665/75729/1/9789241504478_eng.pdf (Accessed 6 October 2012)