We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Priority Paper Evaluation

Azithromycin paradox in the treatment of cystic fibrosis airway disease

    Christopher D Sibley

    Department of Microbiology & Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada

    ,
    Margot E Grinwis

    Department of Microbiology & Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada

    ,
    Harvey R Rabin

    Department of Microbiology & Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada

    Department of Medicine & Adult Cystic Fibrosis Clinic, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada

    &
    Michael G Surette

    † Author for correspondence

    Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.

    Published Online:https://doi.org/10.2217/fmb.10.99

    Evaluation of: Saiman L, Anstead M, Mayer-Hamblett N et al.: Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 303(17), 1707–1715 (2010). Chronic airway infection and inflammation are hallmarks of cystic fibrosis (CF). Disease progression can be described as chronic inflammation punctuated by acute exacerbations with overt immunological responses. Macrolide antibiotics, which have both immunomodulatory and antibacterial activities, have been shown to be beneficial in the management of CF airway disease, although the mechanism of action is unknown. It is also unclear whether all patients, particularly those not colonized with Pseudomonas aeruginosa, benefit from this treatment. In this article, Saiman et al. examine the effects of azithromycin on lung function in pediatric and adolescent CF patients who are not colonized with P. aeruginosa. The data indicate beneficial effects of azithromycin treatment and suggest the mechanisms of action of azithromycin is at least partially independent of P. aeruginosa.

    Papers of special note have been highlighted as:   of interest ▪▪ of considerable interest

    Bibliography

    • Saiman L, Anstead M, Mayer-Hamblett N et al.: Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA303(17),1707–1715 (2010).
    • Saiman L, Marshall BC, Mayer-Hamblett N et al.: Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA290(13),1749–1756 (2003).▪▪ Randomized, placebo-controlled trial of azithromycin on cystic fibrosis (CF) patients colonized with Pseudomonas aeruginosa. This earlier study complements the study reviewed here.
    • Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J: Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax57(3),212–216 (2002).
    • Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais J: Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax61(10),895–902 (2006).
    • Tramper-Stranders GA, Wolfs TFW, Fleer A, Kimpen JLL, van der Ent CK: Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr. Infect. Dis. J.26(1),8–12 (2007).▪▪ Long-term study on the benefits of macrolide therapy for CF patients colonized by Staphylococcus aureus. This study showed that the benefits were transient and after about 1 year the rate of lung function decline returned to the pretreatment rate. This was independent of macrolide resistance in the S. aureus.
    • Florescu DF, Murphy PJ, Kalil AC: Effects of prolonged use of azithromycin in patients with cystic fibrosis: a meta-analysis. Pulm. Pharmacol. Ther.22(6),467–472 (2009).
    • Main E, Prasad A, Schans C: Conventional chest physiotherapy compared to other airway clearance techniques for cystic fibrosis. Cochrane Database Syst. Rev.(1),CD002011 (2005).
    • Fuchs HJ, Borowitz DS, Christiansen DH et al.: Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N. Engl. J. Med.331(10),637–642 (1994).
    • Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC: Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N. Engl. J. Med.354(3),241–250 (2006).
    • 10  Koyama H, Geddes DM: Erythromycin and diffuse panbronchiolitis. Thorax52(10),915–918 (1997).▪ Initial study demonstrating the dramatic effects of macrolides on diffuse panbronchiolitis.
    • 11  Tateda K, Ishii Y, Matsumoto T et al.: Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. Antimicrob. Agents Chemother.40(10),2271–2275 (1996).
    • 12  Imamura Y, Higashiyama Y, Tomono K et al.: Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob. Agents Chemother.49(4),1377–1380 (2005).
    • 13  Baumann U, King M, App EM et al.: Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can. Respir. J.11(2),151–155 (2004).
    • 14  Giamarellos-Bourboulis EJ: Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int. J. Antimicrob. Agents31(1),12–20 (2008).
    • 15  Saiman L, Chen Y, Gabriel PS, Knirsch C: Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother.46(4),1105–1107 (2002).
    • 16  Howe RA, Spencer RC: Macrolides for the treatment of Pseudomonas aeruginosa infections? J. Antimicrob. Chemother.40(2),153–155 (1997).
    • 17  Kawamura-Sato K, Iinuma Y, Hasegawa T, Horii T, Yamashino T, Ohta M: Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Antimicrob. Agents Chemother.44(10),2869–2872 (2000).
    • 18  Hirakata Y, Kaku M, Mizukane R et al.: Potential effects of erythromycin on host defense systems and virulence of Pseudomonas aeruginosa. Antimicrob. Agents Chemother.36(9),1922–1927 (1992).
    • 19  Kita E, Sawaki M, Oku D et al.: Suppression of virulence factors of Pseudomonas aeruginosa by erythromycin. J. Antimicrob. Chemother.27(3),273–284 (1991).
    • 20  Mizukane R, Hirakata Y, Kaku M et al.: Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob. Agents Chemother.38(3),528–533 (1994).
    • 21  Molinari G, Guzmán CA, Pesce A, Schito GC: Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J. Antimicrob. Chemother.31(5),681–688 (1993).
    • 22  Wagner T, Soong G, Sokol S, Saiman L, Prince A: Effects of azithromycin on clinical isolates of Pseudomonas aeruginosa from cystic fibrosis patients. Chest128(2),912–919 (2005).
    • 23  Nagino K, Kobayashi H: Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa. Clin. Microbiol. Infect.3(4),432–439 (1997).
    • 24  Ichimiya T, Takeoka K, Hiramatsu K, Hirai K, Yamasaki T, Nasu M: The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosain vitro. Chemotherapy42(3),186–191 (1996).
    • 25  Yasuda H, Ajiki Y, Koga T, Kawada H, Yokota T: Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob. Agents Chemother.37(9),1749–1755 (1993).
    • 26  Ichimiya T, Yamasaki T, Nasu M: In-vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formation. J. Antimicrob. Chemother.34(3),331–341 (1994).
    • 27  Kobayashi H: Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am. J. Med.99(6A),S26–S30 (1995).
    • 28  Tamaoki J: The effects of macrolides on inflammatory cells. Chest125(2 Suppl.),S41–S50 (2004).
    • 29  Tsai WC, Rodriguez ML, Young KS et al.: Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am. J. Respir. Crit. Care Med.170(12),1331–1339 (2004).
    • 30  Takizawa H, Desaki M, Ohtoshi T et al.: Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am. J. Respir. Crit. Care Med.156(1),266–271 (1997).
    • 31  Khan AA, Slifer TR, Araujo FG, Remington JS: Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int. J. Antimicrob. Agents11(2),121–132 (1999).
    • 32  Abe S, Nakamura H, Inoue S et al.: Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol.22(1),51–60 (2000).
    • 33  Morikawa K, Watabe H, Araake M, Morikawa S: Modulatory effect of antibiotics on cytokine production by human monocytes in vitro. Antimicrob. Agents Chemother.40(6),1366–1370 (1996).
    • 34  Gant TW, O’Connor CK, Corbitt R, Thorgeirsson U, Thorgeirsson SS: In vivo induction of liver P-glycoprotein expression by xenobiotics in monkeys. Toxicol. Appl. Pharmacol.133(2),269–276 (1995).
    • 35  Jaffé A, Francis J, Rosenthal M, Bush A: Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet351(9100),420 (1998).
    • 36  Equi A, Balfour-Lynn IM, Bush A, Rosenthal M: Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet360(9338),978–984 (2002).▪ Highlights the heterogeneity of response to macrolide therapy in different patients. This presentation of the data emphasizes that more refined stratification of CF patients should be performed.
    • 37  Ramsey BW, Pepe MS, Quan JM et al.: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. cystic fibrosis inhaled tobramycin study group. N. Engl. J. Med.340(1),23–30 (1999).
    • 38  Saiman L, Mayer-Hamblett N, Campbell P, Marshall BC, Group MS: Heterogeneity of treatment response to azithromycin in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med.172(8),1008–1012 (2005).
    • 39  Equi AC, Davies JC, Painter H et al.: Exploring the mechanisms of macrolides in cystic fibrosis. Respir. Med.100(4),687–697 (2006).
    • 40  Sibley CD, Rabin H, Surette MG: Cystic fibrosis: a polymicrobial infectious disease. Future Microbiol.1(1),53–61 (2006).
    • 41  Duan K, Dammel C, Stein J, Rabin H, Surette MG: Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol.50(5),1477–1491 (2003).
    • 42  Sibley CD, Duan K, Fischer C et al.: Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog.4(10),e1000184 (2008).▪▪ Demonstrates (in an animal model) that many organisms considered to be avirulent normal microbiota isolated from CF sputum samples are potentially pathogenic or enhance the virulence of P. aeruginosa in mixed infections.
    • 43  Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl Acad. Sci. USA105(39),15070–15075 (2008).▪▪ Highlights a role for the Streptococcus milleri group in acute exacerbations and demonstrates that common pathogens can be overlooked by standard CF microbiology practices.
    • 44  Ergin A, Ercis S, Celik GH: Macrolide resistance mechanisms and in vitro susceptibility patterns of viridans group streptococci isolated from blood cultures. J. Antimicrob. Chemother.57(1),139–141 (2006).
    • 45  Gordon KA, Beach ML, Biedenbach DJ, Jones RN, Rhomberg PR, Mutnick AH: Antimicrobial susceptibility patterns of beta-hemolytic and viridans group streptococci: report from the SENTRY antimicrobial surveillance program (1997–2000). Diagn. Microbiol. Infect. Dis.43(2),157–162 (2002).
    • 46  Asmah N, Eberspächer B, Regnath T, Arvand M: Prevalence of erythromycin and clindamycin resistance among clinical isolates of the Streptococcus anginosus group in Germany. J. Med. Microbiol.58(Pt 2),222–227 (2009).
    • 47  Seppälä H, Haanperä M, Al-Juhaish M, Järvinen H, Jalava J, Huovinen P: Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J. Antimicrob. Chemother.52(4),636–644 (2003).
    • 48  Malhotra-Kumar S, Lammens C, Martel A et al.: Oropharyngeal carriage of macrolide-resistant viridans group streptococci: a prevalence study among healthy adults in Belgium. J. Antimicrob. Chemother.53(2),271–276 (2004).
    • 49  Aracil B, Minambres M, Oteo J, Torres C, Gómez-Garcés JL, Alós JI: High prevalence of erythromycin-resistant and clindamycin-susceptible (M phenotype) viridans group streptococci from pharyngeal samples: a reservoir of mef genes in commensal bacteria. J. Antimicrob. Chemother.48(4),592–594 (2001).
    • 50  Eisenblätter M, Klaus C, Pletz MWR et al.: Influence of azithromycin and clarithromycin on macrolide susceptibility of viridans streptococci from the oral cavity of healthy volunteers. Eur. J. Clin. Microbiol. Infect. Dis.27(11),1087–1092 (2008).
    • 51  Tazumi A, Maeda Y, Goldsmith CE et al.: Molecular characterization of macrolide resistance determinants [erm(B) and mef(A)] in Streptococcus pneumoniae and viridans group streptococci (VGS) isolated from adult patients with cystic fibrosis (CF). J. Antimicrob. Chemother.64(3),501–506 (2009).▪ Reports the prevalence of macrolide resistance in commensal Streptococcus (viridans group) isolated from the airways of CF patients, and demonstrates high rates of resistance from patients who have received macrolides.
    • 52– Grinwis ME, Sibley CD, Parkins MD, Eshaghurshan CS, Rabin HR, Surette MG: Macrolide and clindamycin resistance in Streptococcus milleri group isolates from cystic fibrosis airways. Antimicrob. Agents Chemother.54(7),2823–2829 (2010).▪ Reports the prevalence of antibiotic resistance in Streptococcus milleri group isolates from the airways of CF patients, and demonstrates high rates of macrolide resistance in patients who have received azithromycin.