We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb.10.39

The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for transvlational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito–urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Nagler-Anderson C: Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol.1(1),59–67 (2001).
  • Brandtzaeg P: Induction of secretory immunity and memory at mucosal surfaces. Vaccine25(30),5467–5484 (2007).
  • Mestecky J, Moro I, Kerr MA, Woof J: Mucosal immunoglobulins. In: Mucosal Immunology. Mestecky, J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer LL (Eds). Elsevier/Academic Press, Amsterdam, The Netherlands, 153–181 (2005).
  • Phalipon A, Corthésy B: Novel functions for mucosal SIgA of IgA. In: Mucosal immune defense: immunoglobulin A. Kaetzel CS (Ed.). Springer, NY, USA, 183–202 (2007).
  • Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P: The immune geography of IgA induction and function. Mucosal Immunol.1(1),11–22 (2008).
  • Kaetzel CS: The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev.206,83–99 (2005).
  • Russell MW, Kilian M: Biological activities of IgA. In: Mucosal Immunology. Mestecky, J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer LL (Eds). Elsevier/Academic Press, Amsterdam, The Netherlands, 267–290 (2005).
  • Mach J, Hshieh T, Hsieh D, Grubbs N, Chervonsky A: Development of intestinal M cells. Immunol. Rev.206,177–189 (2005).
  • Hase K, Kawano K, Nochi T et al.: Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature462(7270),226–230 (2009).
  • 10  Favre L, Spertini F, Corthésy B: Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses. J. Immunol.175(5),2793–2800 (2005).
  • 11  Fagarasan S, Honjo T: Regulation of IgA synthesis at mucosal surfaces. Curr. Opin. Immunol.16(3),277–283 (2004).
  • 12  He B, Xu W, Santini PA et al.: Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity26(6),812–826 (2007).
  • 13  Tsuji M, Komatsu N, Kawamoto S et al.: Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science323(5920),1488–1492 (2009).
  • 14  Corthésy B: Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J. Immunol.178(1),27–32 (2007).
  • 15  Kilian M, Mestecky J, Russell MW: Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol. Rev.52(2),296–303 (1988).
  • 16  Chintalacharuvu KR, Raines M, Morrison SL: Divergence of human α-chain constant region gene sequences. A novel recombinant α 2 gene. J. Immunol.152(11),5299–5304 (1994).
  • 17  Chintalacharuvu KR, Morrison SL: Residues critical for H-L disulfide bond formation in human IgA1 and IgA2. J. Immunol.157(8),3443–3449 (1996).
  • 18  Grey HM, Abel CA, Yount WJ, Kunkel HG: A subclass of human γ-A-globulins (γ-A2) which lacks the disulfied bonds linking heavy and light chains. J. Exp. Med.128(6),1223–1236 (1968).
  • 19  Koshland ME: The coming of age of the immunoglobulin J chain. Annu. Rev. Immunol.3,425–453 (1985).
  • 20  Johansen FE, Braathen R, Brandtzaeg P: Role of J chain in secretory immunoglobulin formation. Scand. J. Immunol.52(3),240–248 (2000).
  • 21  Hexham JM, White KD, Carayannopoulos LN et al.: A human immunoglobulin (Ig)A ca3 domain motif directs polymeric Ig receptor-mediated secretion. J. Exp. Med.189(4),747–752 (1999).
  • 22  Frütiger S, Hughes GJ, Paquet N, Lüthi R, Jaton JC: Disulfide bond assignement in human J chain and its covalent pairing with immunoglobulin M. Biochemistry31(50),12643–12647 (1992).
  • 23  Hendrickson BA, Conner DA, Ladd DJ et al.: Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J. Exp. Med.182(6),1905–1911 (1995).
  • 24  Hendrickson BA, Rindisbacher L, Corthésy B et al.: Lack of association of secretory component with IgA in J chain-deficient mice. J. Immunol.157(2),750–754 (1996).
  • 25  Eiffert H, Quentin E, Wiederhold M et al.: Determination of the molecular structure of the human free secretory component. Prot. Chem. Hoppe-Seyler372(2),119–128 (1991).
  • 26  Frütiger S, Hughes GJ, Fonck C, Jaton JC: High and low molecular weight rabbit secretory components. Evidence for the deletion of the second and third domains in the smaller polypeptide. J. Biol. Chem.262(4),1712–1715 (1987).
  • 27  Bakos MA, Kurosky A, Goldblum RM: Characterization of a critical binding site for human polymeric Ig on secretory component. J. Immunol.147(10),3419–3426 (1991).
  • 28  Fallgreen-Gebauer E, Gebauer W, Bastian A et al.: The covalent linkage of SC to IgA: structure of secretory IgA. Biol. Chem. Hoppe-Seyler374(11),1023–1028 (1993).
  • 29  Hughes GJ, Frütiger S, Savoy LA, Reason AJ, Morris HR, Jaton JC: Human free secretory component is composed of the first 585 amino acid residues of the polymeric immunoglobulin receptor. FEBS Lett.410(2–3),443–446 (1997).
  • 30  Lindh E, Björk I: Binding of secretory component to dimers of immunoglobulin A in vitro. Mechanism of the covalent bond formation. Eur. J. Biochem.62(2),263–270 (1976).
  • 31  Rindisbacher L, Cottet S, Wittek R, Kraehenbuhl JP, Corthésy, B: Production of human secretory component with dimeric IgA binding capacity using viral expression systems. J. Biol. Chem.270(23),14220–14228 (1995).
  • 32  Crottet P, Corthésy B: Mapping the interaction between murine IgA and murine secretory component carrying epitope substitutions reveals a role of domains II and III in covalent binding to IgA. J. Biol. Chem.274(44),31456–31462 (1999).
  • 33  Endo T, Mestecky J, Kulhavy R, Kobata A: Carbohydrate heterogeneity of human myeloma proteins of the IgA1 and IgA2 subclasses. Mol. Immunol.31(18),1415–1422 (1994).
  • 34  Mattu TS, Pleass RJ, Willis AC et al.: The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc α receptor interactions. J. Biol. Chem.273(4),2260–2272 (1998).
  • 35  Royle L, Roos A, Harvey DJ et al.: Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem.278(22),20140–20153 (2003).
  • 36  Roque-Barreira MC, Campos-Neto A: Jacalin: an IgA-binding lectin. J. Immunol.134(3),1740–1743 (1985).
  • 37  Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol.25,21–50 (2007).
  • 38  Taylor AK, Wall R: Selective removal of a heavy-chain glycosylation sites causes immunoglobulin A degradation and reduced secretion. Mol. Cell. Biol.8,4197–4203 (1988).
  • 39  Baenziger JU: Structure of the oligosaccharide of human J chain. Structure of the oligosaccharide of human J chain. J. Biol. Chem.254(10),4063–4071 (1979).
  • 40  Hughes GJ, Reason AJ, Savoy L, Jaton J, Frutiger-Hughes S: Carbohydrate moieties in human secretory component. Biochim. Biophys. Acta1434(1),86–93 (1999).
  • 41  Perrier C, Sprenger N, Corthésy B: Glycans on secretory component participate in innate protection against mucosal pathogens. J. Biol. Chem.281(20),14280–14287 (2006).▪ Neutralization of pathogen toxins through carbohydrates located on the surface of the secretory component assigns a novel function to the protein alone or in the context of secretory immunoglobulin A (SIgA).
  • 42  Bonner A, Almogren A, Furtado PB, Kerr MA, Perkins SJ: The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses. J. Biol. Chem.284(8),5077–5087 (2009).
  • 43  Bonner A, Almogren A, Furtado PB, Kerr MA, Perkins SJ: Location of secretory component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory IgA1 in mucosal immunity. Mucosal Immunol.2(1),74–84 (2009).▪ First 3D model of SIgA that defines structural features of the antibody and contributes to explaining its mode of action at mucosal surfaces.
  • 44  Bloth B, Svehag SE: Further studies on the ultrastructure of dimeric IgA of human origin. J. Exp. Med.133(5),1035–1042 (1971).
  • 45  Brandtzaeg P, Prydz H: Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature311(5981),71–73 (1974).
  • 46  Johansen FE, Braathen R, Brandtzaeg P: The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol.167(9),5185–5192 (2001).
  • 47  Bonner A, Perrier C, Corthésy B, Perkins SJ: Solution structure of human secretory component and implications for biological function. J. Biol. Chem.282(23),16969–16980 (2007).
  • 48  Ladjeva I, Peterman JH, Mestecky J: IgA subclasses of human colostral antibodies specific for microbial and food antigens. Clin. Exp. Immunol.78(1),85–90 (1989).
  • 49  Angel J, Franco MA, Greenberg HB: Rotavirus vaccines: recent developments and future considerations. Nat. Rev. Microbiol.5(7),529–539 (2007).
  • 50  Burns JW, Siadat-Pajouh M, Krishnaney AA, Greenberg HB: Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science72(5258),104–107 (1996).
  • 51  Corthésy B, Benureau Y, Perrier C et al.: Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J. Virol.80(21),10692–10699 (2006).
  • 52  O’Neal CM, Harriman GR, Conner ME: Protection of the villus epithelial cells of the small intestine from rotavirus infection does not require immunoglobulin A. J. Virol.74(9),4102–4109 (2000).
  • 53  Franco MA, Angel J, Greenberg HB: Immunity and correlates of protection for rotavirus vaccines. Vaccine24(15),2718–2731 (2006).
  • 54  Suerbaum S, Michetti P: Helicobacter pylori infection. N. Engl. J. Med.347(15),1175–1186 (2002).
  • 55  Malfertheiner P, Chan FK, McColl KE: Peptic ulcer disease. Lancet374(9699),1449–1461 (2009).
  • 56  Covacci A, Rappuoli R: Helicobacter pylori: after the genome, back to biology. J. Exp. Med.197(7),807–811 (2003).
  • 57  Prinz C, Hafsi N, Voland P: Helicobacter pylori virulence factors and the host immune response: implications for therapeutic vaccination. Trends Microbiol.11(3),134–138 (2003).
  • 58  Del Giudice G, Malfertheiner P, Rappuoli R: Development of vaccines against Helicobacter pylori.Expert Rev. Vaccines8(8),1037–1049 (2009).
  • 59  Blanchard TG, Czinn SJ, Maurer R, Thomas WD, Soman G, Nedrud JG: Urease-specific monoclonal antibodies prevent Helicobacter felis infection in mice. Infect. Immun.63(4),1394–1399 (1995).
  • 60  Ahlstedt I, Lindholm C, Lönroth H, Hamlet A, Svennerholm AM, Quiding-Järbrink M: Role of local cytokines in increased gastric expression of the secretory component in Helicobacter pylori infection. Infect. Immun.67(9),4921–4925 (1999).
  • 61  Goto T, Nishizono A, Fujioka T, Ikewaki J, Mifune K, Nasu M: Local secretory immunoglobulin A and postimmunization gastritis correlate with protection against Helicobacter pyloriinfection after oral vaccination of mice. Infect. Immun.67(5),2531–2539 (1999).
  • 62  Ferrero RL, Thiberge JM, Labigne A: Local immunoglobulin G antibodies in the stomach may contribute to immunity against Helicobacter infection in mice. Gastroenterology113(1),185–194 (1997).
  • 63  Casswall TH, Nilsson HO, Björck L et al.: Bovine anti-Helicobacter pylori antibodies for oral immunotherapy. Scand. J. Gastroenterol.37(12),1380–1385 (2002).
  • 64  Kelly CP, Pothoulakis C, LaMont JT: Clostridium difficile colitis. N. Engl. J. Med.330(4),257–262 (1994).
  • 65  Lyerly DM, Krivan HC, Wilkins TD: Clostridium difficile: its disease and toxins. Clin. Microbiol. Rev.1(1),1–18 (1988).
  • 66  Stubbe H, Berdoz J, Kraehenbuhl JP, Corthésy B: Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J. Immunol.164(4),1952–1960 (2000).
  • 67  Cottet S, Corthésy-Theulaz I, Spertini F, Corthésy B: Microaerophilic conditions permit to mimic in vitro events occurring during in vivoHelicobacter pylori infection and to identify Rho/Ras-associated proteins in cellular signaling. J. Biol. Chem.277(37),33978–33986 (2002).
  • 68  Renegar KB, Small PA: Passive transfer of local immunity to influenza-virus infection by IgA antibody. J. Immunol.146(6),1972–1978 (1991).
  • 69  Renegar KB, Small PA: Immunoglobulin A mediation of murine nasal anti-influenza virus immunity. J. Virol.65(4),2146–2148 (1991).
  • 70  Takase H, Murakami Y, Endo A, Ikeuchi T: Antibody responses and protection in mice immunized orally against influenza virus. Vaccine14(17–18),1651–1656 (1996).
  • 71  Tamura S, Funato H, Hirabayashi Y et al.: Cross-protection against influenza-A virus-infection by passively transferred respiratory-tract IgA antibodies to different hemagglutinin molecules. Eur. J. Immunol.21(6),1337–1344 (1991).
  • 72  Mazanec MB, Coudret CL, Fletcher DR: Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol.69(2),1339–1343 (1995).
  • 73  Fujioka H, Emancipator SN, Aikawa M et al.: Immunocytochemical colocalization of specific immunoglobulin A with sendai virus protein in infected polarized epithelium. J. Exp. Med.188(7),1223–1229 (1998).
  • 74  Kozlowski PA, Neutra MR: The role of mucosal immunity in prevention of HIV transmission. Curr. Mol. Med.3(3),217–228 (2003).
  • 75  Bomsel M, Heyman M, Hocini H et al.: Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity9(2),277–287 (1998).
  • 76  Huang YT, Wright A, Gao X, Kulick L, Yan H, Lamm ME: Intraepithelial cell neutralization of HIV-1 replication by IgA. J. Immunol.174(8),4828–4835 (2005).
  • 77  Jackson S, Mestecky J, Moldoveanu Z, Spearman P: Collection and processing of human mucosal secretions. In: Mucosal Immunology. Ogra PL, Mestecky, J, Lamm ME, Strober W, Bienenstock J, McGhee JR (Eds). Academic Press, CA, USA, 1567–1575 (1999).
  • 78  Wright A, Lamm ME, Huang YT: Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A. J. Virol.82(23),11526–11535 (2008).
  • 79  Devito C, Broliden K, Kaul R et al.: Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J. Immunol.165(9),5170–5176 (2000).
  • 80  Moja P, Tranchat C, Tchou I et al.: Neutralization of human immunodeficiency virus type 1 (HIV-1) mediated by parotid IgA of HIV-1-infected patients. J. Infect. Dis.181(5),1607–1613 (2000).
  • 81  Alfsen A, Iniguez P, Bouguyon E, Bomsel M: Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol.166(10),6257–6265 (2001).
  • 82  Mantis NJ, Palaia J, Hessell AJ et al.: Inhibition of HIV-1 infectivity and epithelial cell transfer by human monoclonal IgG and IgA antibodies carrying the b12 V region. J. Immunol.179(5),3144–3152 (2007).
  • 83  Xu W, Santini PA, Sullivan JS et al.: HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat. Immunol.10(9),1008–1017 (2009).
  • 84  Kaetzel CS, Robinson JK, Chintalacharuvu KR, Vaerman JP, Lamm ME: The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc. Natl Acad. Sci. USA88(19),8796–8800 (1991).
  • 85  Robinson JK, Blanchard TG, Levine AD, Emancipator SN, Lamm ME: A mucosal IgA-mediated excretory immune system in vivo.J. Immunol.166(6),3688–3692 (2001).
  • 86  Kramer DR, Cebra JJ: Early appearance of “natural” mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J. Immunol.154(5),2051–2062 (1995).
  • 87  van der Waaij LA, Limburg PC, Mesander G, van der Waaij D: In vivo IgA coating of anaerobic bacteria in human faeces. Gut38(3),348–354 (1996).
  • 88  Bos NA, Jiang HQ, Cebra JJ: T-cell control of the gut IgA response against commensal bacteria. Gut48(6),762–764 (2001).
  • 89  Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM: A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science288(5474),2222–2226 (2000).
  • 90  Shroff KE, Meslin K, Cebra JJ: Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun.63(10),3904–3913 (1995).
  • 91  Cebra JJ: Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr.69(5),S1046–S1051 (1999).
  • 92  Macpherson AJ, Uhr T: Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science303(5664),1662–1665 (2004).
  • 93  Kadaoui KA, Corthésy B: Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer’s patches with restriction to mucosal compartment. J. Immunol.179(11),7751–7757 (2007).
  • 94  Macpherson AJ, Geuking MB, McCoy KD: Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology115(2),153–162 (2005).
  • 95  Harris NL, Spoerri I, Schopfer JF et al.: Mechanisms of neonatal mucosal antibody protection. J. Immunol.177(9),6256–6262 (2006).
  • 96  Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T: Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science298(5597),1424–1427 (2002).▪ Evidence that the lack of class switch toward the IgA isotype results in aberrant overgrowth of the endogenous microbiota.
  • 97  Biesbrock AR, Reddy MS, Levine MJ: Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect. Immun.59(10),3492–3497 (1991).
  • 98  Phalipon A, Corthésy B: Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol.24(2),55–58 (2003).
  • 99  Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W: Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology109(4),580–587 (2003).
  • 100  Macpherson AJ, Slack E: The functional interactions of commensal bacteria with intestinal secretory IgA. Curr. Opin. Gastroenterol.23(6),673–678 (2007).
  • 101  Mowat AM: Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol.3(4),331–341 (2003).
  • 102  Mestecky J, Russell MW, Elson CO: Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J. Immunol.179(9),5633–5638 (2007).
  • 103  Freytag LC, Clements JD: Mucosal adjuvants. Vaccine23(15),1804–1813 (2005).
  • 104  Schubert C: Boosting our best shot. Nat. Med.15(9),984–988 (2009).
  • 105  Zinkernagel RM: Maternal antibodies, childhood infections, and autoimmune diseases. N. Engl. J. Med.345(18),1331–1335 (2001).
  • 106  Newburg DS, Walker WA: Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res.61(1),2–8 (2007).
  • 107  Casswall TH, Sarker SA, Faruque SM et al.: Treatment of enterotoxigenic and enteropathogenic Escherichia coli-induced diarrhoea in children with bovine immunoglobulin milk concentrate from hyperimmunized cows: a double-blind, placebo-controlled, clinical trial. Scand. J. Gastroenterol.35(7),711–718 (2000).
  • 108  Houdebine LM: Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infect. Dis.32(2),107–121 (2009).
  • 109  Kamihira M, Kawabe Y, Shindo T et al.: Production of chimeric monoclonal antibodies by genetically manipulated chickens. J. Biotechnol.141(1–2),18–25 (2009).
  • 110  Corthésy B: Recombinant secretory immunoglobulin A in passive immunotherapy: linking immunology and biotechnology. Curr. Pharm. Biotechnol.17(2),198–203 (2003).
  • 111  Casadevall A, Dadachova E, Pirofski LA: Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol.2(9),695–703 (2004).
  • 112  Starlinger M, Schiessel R: Bicarbonate (HCO3) delivery to the gastroduodenal mucosa by the blood: its importance for mucosal integrity. Gut29(5),647–654 (1988).
  • 113  Mohamed AH, Hunt RH: The rationale of acid suppression in the treatment of acid-related disease. Aliment. Pharmacol. Ther.8(Suppl. 1),3–10 (1994).
  • 114  Kaye RS, Purewal TS, Alpar OH: Development and testing of particulate formulations for the nasal delivery of antibodies. J. Control Release135(2),127–135 (2009).
  • 115  Corthésy B: Recombinant immunoglobulin A: powerful tools for fundamental and applied research. Trends Biotechnol.20(2),65–71 (2002).
  • 116  Phalipon A, Kaufmann M, Michetti P et al.: Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexnerilipopolysaccharide protects against murine experimental shigellosis. J. Exp. Med.182(3),769–778 (1995).
  • 117  Weltzin R, Traina-Dorge V, Soike K et al.: Intranasal monoclonal IgA antibody to respiratory syncytial virus protects Rhesus monkeys against upper and lower respiratory tract infection. J. Infect. Dis.174(8),256–261 (1996).
  • 118  Ma JK, Hykmat BY, Wycoff K et al.: Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat. Med.4(5),601–606 (1998).
  • 119  Enriquez FJ, Riggs MW: Role of immunoglobulin A monoclonal antibodies against P23 in controlling murine Cryptosporidium parvum infection. Infect. Immun.66(9),4469–4473 (1998).
  • 120  Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthésy B: Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo.Immunity17(1),107–115 (2002).▪ Demonstration of the essential function of secretory component in properly anchoring SIgA at mucosal surfaces to guarantee optimal protective functions.
  • 121  Hutchings AB, Helander A, Silvey KJ et al.: Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer’s patches. J. Virol.78(2),947–957 (2004).
  • 122  Williams A, Reljic R, Naylor I et al.: Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology111(3),328–333 (2004).
  • 123  Yankov ID, Petrov DP, Mladenov IV et al.: Protective efficacy of IgA monoclonal antibodies to O and H antigens in a mouse model of intranasal challenge with Salmonella enterica serotype enteritidis. Microbes Infect.6(10),901–910 (2004).
  • 124  Gorrell RJ, Robins-Browne RM: Antibody-mediated protection against infection with Helicobacter pylori in a suckling mouse model of passive immunity. Infect. Immun.77(11),5116–5129 (2009).
  • 125  Halpern M, Koshland ME: The stoichiometry of J chain in human secretory IgA. J. Immunol.111(6),1653–1660 (1973).
  • 126  Crottet P, Corthésy B: Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab´)2: a possible implication for mucosal defense. J. Immunol.161(10),5445–5453 (1998).
  • 127  Boullier S, Tanguy M, Kadaoui K et al.: Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. J. Immunol.183(9),5879–5885 (2009).
  • 128  Wold AE, Mestecky J, Tomana M et al.: Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun.58(9),3073–3077 (1990).
  • 129  Mestecky J, Russell MW: Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol. Lett.124(2),57–62 (2009).
  • 130  Bos NA, Bun JC, Popma SH et al.: Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect. Immun.64(2),616–623 (1996).
  • 131  Dunn-Walters D, Boursier L, Spencer J: Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol.37(3–4),107–113 (2000).
  • 132  Schroten H, Stapper C, Plogmann R, Köhler H, Hackre J, Hanisch FG: Fab-independent antiadhesion effects of secretory immunoglobulin A on S-fimbriated Escherichia coli are mediated by sialyloligosaccharides. Infect. Immun.66(8),3971–3973 (1998).
  • 133  Mantis NJ, Farrant, SA, Mehta S: Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. J. Immunol.172(11),6838–6845 (2004).
  • 134  Dallas SD, Rolfe RD: Binding of Clostridium difficile toxin A to human milk secretory component. J. Med. Microbiol.47(10),879–888 (1998).
  • 135  Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD: The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc α RI binding and serum killing of bacteria. J. Immunol.174(5),2926–2933 (2005).
  • 136  Borén T, Falk P, Roth KA, Larson G, Normark S: Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science262(5141),1892–1895 (1993).
  • 137  Falk P, Roth KA, Borén T, Westblom TU, Gordon JI, Normark S: An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proc. Natl Acad. Sci. USA90(5),2035–2039 (1993).
  • 138  Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS: SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol.25(6),1113–1124 (1997).
  • 139  Rosenow C, Ryan P, Weiser JN et al.: Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae.Mol. Microbiol.25(5),819–829 (1997).
  • 140  Lu L, Lamm ME, Li H, Corthésy B, Zhang JR: The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J. Biol. Chem.278(48),48178–48187 (2003).
  • 141  Elm C, Braathen R, Bergmann S et al.: Ectodomains 3 and 4 of human polymeric immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J. Biol. Chem.279(8),6296–6304 (2004).
  • 142  Hammerschmidt S, Tillig MP, Wolff S, Vaerman JP, Chhatwal GS: Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol. Microbiol.36(3),726–736 (2000).
  • 143  Luo R, Mann B, Lewis WS et al.: Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae.EMBO J.24(1),34–43 (2005).
  • 144  Zhang JR, Mostov KE, Lamm ME et al.: The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell102(6),827–837 (2000).
  • 145  Brock SC, McGraw PA, Wright PF, Crowe JE: The human polymeric immunoglobulin receptor facilitates invasion of epithelial cells by Streptococcus pneumoniae in a strain-specific and cell type-specific manner. Infect. Immun.70(9),5091–5095 (2002).
  • 146  Kaetzel CS. Polymeric Ig receptor: defender of the fort or Trojan horse? Curr. Biol.11(1),R35–R38 (2001).