We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Regulation of genes involved in sugar uptake, glycolysis and lactate production in Corynebacterium glutamicum

    Haruhiko Teramoto

    Research Institute of Innovative Technology for the Earth, 9–2, Kizugawadai, Kizugawa, Kyoto 619–0292, Japan

    ,
    Masayuki Inui

    Research Institute of Innovative Technology for the Earth, 9–2, Kizugawadai, Kizugawa, Kyoto 619–0292, Japan

    &
    Published Online:https://doi.org/10.2217/fmb.10.114

    Corynebacterium glutamicum is a nonpathogenic, GC-rich, Gram-positive bacterium with a long history in the industrial production of amino acids. Recently, the species has become of increasing interest as a model bacterium for closely related, medically important pathogenic species such as Corynebacterium diphtheriae and Mycobacterium tuberculosis. In this article, recent advances in understanding of the C. glutamicum regulatory network of genes involved in carbohydrate metabolism are reviewed with regards to sugar uptake, glycolysis and lactate production.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • Liebl W: Corynebacterium taxonomy. In: Handbook of Corynebacterium glutamicum. Eggeling L, Bott M (Eds). CRC Press, FL, USA 9–34 (2005).
    • Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A: The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics6(1),86 (2005).
    • Baumbach J, Wittkop T, Kleindt CK, Tauch A: Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat. Protoc.4(6),992–1005 (2009).
    • Ikeda M, Nakagawa S: The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol.62(2–3),99–109 (2003).
    • Kalinowski J, Bathe B, Bartels D et al.: The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J. Biotechnol.104(1–3),5–25 (2003).
    • Yukawa H, Omumasaba CA, Nonaka H et al.: Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153(4),1042–1058 (2007).
    • Bott M: Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol.15(9),417–425 (2007).
    • Brinkrolf K, Brune I, Tauch A: The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. J. Biotechnol.129(2),191–211 (2007).
    • Schröder J, Tauch A: Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol. Rev.34(5),685–737 (2010).
    • 10  Moon MW, Park SY, Choi SK, Lee JK: The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J. Mol. Microbiol. Biotechnol.12(1–2),43–50 (2007).
    • 11  Tanaka Y, Okai N, Teramoto H, Inui M, Yukawa H: Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R. Microbiology154(1),264–274 (2008).
    • 12  Gaigalat L, Schlüter JP, Hartmann M et al.: The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol. Biol.8,104 (2007).▪ SugR-dependent regulation of expression of sugar uptake (phosphoenolpyruvate-dependent phosphotransferase system [PTS]) genes.
    • 13  Engels V, Wendisch VF: The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol.189(8),2955–2966 (2007).▪ SugR-dependent regulation of expression of sugar uptake (PTS) genes.
    • 14  Tanaka Y, Teramoto H, Inui M, Yukawa H: Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol.78(2),309–318 (2008).▪ SugR-dependent regulation of expression of sugar uptake (PTS) genes.
    • 15  Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M: Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol.67(2),305–322 (2008).▪ GntR-dependent regulation of sugar uptake (PTS) and gluconate catabolism genes.
    • 16  Yokota A, Lindley ND: Central metabolism: sugar uptake and conversion. In: Handbook of Corynebacterium glutamicum. Eggeling L, Bott M (Eds). CRC Press, FL, USA, 215–240 (2005).
    • 17  Han SO, Inui M, Yukawa H: Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology153(7),2190–2202 (2007).
    • 18  Inui M, Murakami S, Okino S et al.: Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol.7(4),182–196 (2004).
    • 19  Inui M, Suda M, Okino S et al.: Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology153(8),2491–2504 (2007).
    • 20  Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H: Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl. Environ. Microbiol.74(16),5146–5152 (2008).
    • 21  Omumasaba CA, Okai N, Inui M, Yukawa H: Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol.8(2),91–103 (2004).
    • 22  Eikmanns BJ: Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J. Bacteriol.174(19),6076–6086 (1992).
    • 23  Schwinde JW, Thum-Schmitz N, Eikmanns BJ, Sahm H: Transcriptional analysis of the gap–pgk–tpi–ppc gene cluster of Corynebacterium glutamicum. J. Bacteriol.175(12),3905–3908 (1993).
    • 24  Toyoda K, Teramoto H, Inui M, Yukawa H: Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl. Microbiol. Biotechnol.81(2),291–301 (2008).▪ SugR-dependent regulation of expression of a glycolysis gene.
    • 25  Toyoda K, Teramoto H, Inui M, Yukawa H: Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J. Bacteriol.191(3),968–977 (2009).▪ RamA-dependent regulation of expression of a glycolysis gene.
    • 26  Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ: Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol.188(7),2554–2567 (2006).
    • 27  Engels V, Lindner SN, Wendisch VF: The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum. J. Bacteriol.190(24),8033–8044 (2008).▪ SugR-dependent regulation of expression of glycolysis and lactate production genes.
    • 28  Hansmeier N, Albersmeier A, Tauch A et al.: The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology152(4),923–935 (2006).
    • 29  Arndt A, Eikmanns BJ: The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J. Bacteriol.189(20),7408–7416 (2007).
    • 30  Auchter M, Arndt A, Eikmanns BJ: Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J. Biotechnol.140(1–2),84–91 (2009).
    • 31  Jungwirth B, Emer D, Brune I et al.: Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol. Lett.281(2),190–197 (2008).
    • 32  Toyoda K, Teramoto H, Inui M, Yukawa H: Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol.83(2),315–327 (2009).▪ SugR-dependent regulation of expression of a lactate production gene.
    • 33  Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A: Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum. Microbiology155(4),1360–1375 (2009).▪ SugR-dependent regulation of expression of a lactate production gene.
    • 34  Toyoda K, Teramoto H, Inui M, Yukawa H: The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR. J. Bacteriol.191(13),4251–4258 (2009).▪ LldR-dependent regulation of expression of a lactate production gene.
    • 35  Gao Y-G, Suzuki H, Itou H et al.: Structure and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Res.36(22),7110–7123 (2008).
    • 36  Georgi T, Engels V, Wendisch VF: Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J. Bacteriol.190(3),963–971 (2008).
    • 37  Kim HJ, Kim TH, Kim Y, Lee HS: Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol.186(11),3453–3460 (2004).
    • 38  Letek M, Valbuena N, Ramos A et al.: Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J. Bacteriol.188(2),409–423 (2006).
    • 39  Kohl TA, Tauch A: The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J. Biotechnol.143(4),239–246 (2009).
    • 40  Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A: The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J. Biotechnol.135(4),340–350 (2008).
    • 41  Park SY, Moon MW, Subhadra B, Lee JK: Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol. Lett.304(2),107–115 (2010).
    • 42  Brocker M, Schaffer S, Mack C, Bott M: Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J. Bacteriol.191(12),3869–3880 (2009).
    • 43  Nentwich SS, Brinkrolf K, Gaigalat L et al.: Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology155(1),150–164 (2009).
    • 44  Brinkrolf K, Plöger S, Solle S et al.: The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology154(4),1068–1081 (2008).
    • 45  Tanaka Y, Teramoto H, Inui M, Yukawa H: Identification of a second β-glucoside phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology155(11),3652–3660 (2009).
    • 46  Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H: Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol.75(11),3419–3429 (2009).
    • 47  Brinkrolf K, Brune I, Tauch A: Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet. Mol. Res.5(4),773–789 (2006).
    • 48  Teramoto H, Inui M, Yukawa H: Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol.75(11),3461–3468 (2009).