We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Multifaceted role of lipids in Mycobacterium leprae

    Gurkamaljit Kaur

    *Author for correspondence:

    E-mail Address: sangha.gurkamal@gmail.com

    Research Scholar, Department of Biotechnology, Panjab University, Chandigarh 160014, India

    &
    Jagdeep Kaur

    **Author for correspondence:

    E-mail Address: jagsekhon@yahoo.com

    Department of Biotechnology, Panjab University, Chandigarh 160014, India

    Published Online:https://doi.org/10.2217/fmb-2016-0173

    Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Pieters J, Gatfield J. Hijacking the host: survival of pathogenic mycobacteria inside macrophages. Trends Microbiol. 10(3), 142–146 (2002).
    • 2 Jarlier V, Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett. 123(1–2), 11–18 (1994).
    • 3 Zu Bentrup KH, Russell DG. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 9(12), 597–605 (2001).
    • 4 Neyrolles O, Hernández-Pando R, Pietri-Rouxel F et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS ONE 1(1), e43 (2006).
    • 5 Ehrt S, Schnappinger D. Mycobacterium tuberculosis virulence: lipids inside and out. Nat. Med. 13(3), 284–285 (2007).
    • 6 Mendum TA, Wu H, Kierzek AM, Stewart GR. Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells. BMC Genomics 16(1), 1 (2015).
    • 7 Bacon J, Dover LG, Hatch KA et al. Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology 153(5), 1435–1444 (2007).
    • 8 Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36(3), 514–532 (2012).
    • 9 Minnikin DE, Lee OY-C, Wu HH et al. Ancient mycobacterial lipids: key reference biomarkers in charting the evolution of tuberculosis. Tuberculosis 95, S133–S139 (2015).
    • 10 Wang H, Maeda Y, Fukutomi Y, Makino M. An in vitro model of Mycobacterium leprae induced granuloma formation. BMC Infect. Dis. 13(1), 1 (2013).
    • 11 Levy L, Ji B. The mouse foot-pad technique for cultivation of Mycobacterium leprae. Lepr. Rev. 77(1), 5 (2006).
    • 12 Yuan Y, Zhu Y, Crane DD, Barry CE III. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol. Microbiol. 29(6), 1449–1458 (1998).
    • 13 Rajni, Rao N, Meena LS. Biosynthesis and virulent behavior of lipids produced by Mycobacterium tuberculosis: LAM and cord factor: an overview. Biotechnol. Res. Int. 2011, 274693 (2011).
    • 14 Lee OY, Wu HH, Besra GS et al. Lipid biomarkers provide evolutionary signposts for the oldest known cases of tuberculosis. Tuberculosis 95, S127–S132 (2015).
    • 15 De Libero G, Mori L. The T-cell response to lipid antigens of Mycobacterium tuberculosis. Front. Immunol. 5, 219 (2014).
    • 16 Moura A, Mariano M. Lipids from Mycobacterium leprae cell wall are endowed with an anti-inflammatory property and inhibit macrophage function in vivo. Immunology 89(4), 613–618 (1996).
    • 17 Moura A, Mariano M. Lipids from Mycobacterium leprae cell wall suppress T-cell activation in vivo and in vitro. Immunology 92(4), 429–436 (1997).
    • 18 Baeza I, Wong-Baeza C, Valerdi E et al. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids. Mem. Inst. Oswaldo Cruz 107, 95–103 (2012).
    • 19 Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83(1), 91–97 (2003).
    • 20 Bhamidi S, Scherman MS, Jones V et al. Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown Mycobacterium tuberculosis. J. Biol. Chem. 286(26), 23168–23177 (2011).
    • 21 Cole S, Eiglmeier K, Parkhill J et al. Massive gene decay in the leprosy bacillus. Nature 409(6823), 1007–1011 (2001). •• Gives excellent knowledge about reductive evolution in Mycobacterium leprae. A good account of the number of genes in various categories is given in comparison to M. tuberculosis.
    • 22 Kai M, Fujita Y, Maeda Y et al. Identification of trehalose dimycolate (cord factor) in Mycobacterium leprae. FEBS Lett. 581(18), 3345–3350 (2007).
    • 23 Mishra AK, Driessen NN, Appelmelk BJ, Besra GS. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev. 35(6), 1126–1157 (2011).
    • 24 Scollard D, Adams L, Gillis T, Krahenbuhl J, Truman R, Williams D. The continuing challenges of leprosy. Clin. Microbiol. Rev. 19(2), 338–381 (2006).
    • 25 Brennan PJ, Barrow WW. Evidence for species-specific lipid antigens in Mycobacterium leprae. Int. J. Lepr. Other Mycobact. Dis. 48(4), 382–387 (1980).
    • 26 Briken V, Porcelli SA, Besra GS, Kremer L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53(2), 391–403 (2004).
    • 27 Minnikin DE, Kremer L, Dover LG, Besra GS. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9(5), 545–553 (2002).
    • 28 Ducati RG, Ruffino-Netto A, Basso LA, Santos DS. The resumption of consumption: a review on tuberculosis. Mem. Inst. Oswaldo Cruz 101(7), 697–714 (2006).
    • 29 Bansal-Mutalik R, Nikaido H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc. Natl Acad. Sci. 111(13), 4958–4963 (2014).
    • 30 Melancon-Kaplan J, Hunter SW, Mcneil M et al. Immunological significance of Mycobacterium leprae cell walls. Proc. Natl Acad. Sci. 85(6), 1917–1921 (1988).
    • 31 Daffe M, Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung. Dis. 79, 153–169 (1999).
    • 32 Draper P, Payne SN, Dobson G, Minnikin D. Isolation of a characteristic phthiocerol dimycocerosate from Mycobacterium leprae. Microbiology 129(3), 859–863 (1983).
    • 33 Daffe M, Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998).
    • 34 Hunter SW, Brennan PJ. A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J. Bacteriol. 147(3), 728–735 (1981).
    • 35 Rastogi N. Recent observations concerning structure and function relationships in themycobacterial cell envelope: elaboration of a model in terms of mycobacterialpathogenicity, virulence and drug-resistance. Res. Microbiol. 142(4), 464–476 (1999).
    • 36 Julián E, Matas L, Pérez A et al. Serodiagnosis of tuberculosis: comparison of immunoglobulin a (IgA) response to sulfolipid I with IgG and IgM responses to 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, and cord factor antigens. J. Clin. Microbiol. 40(10), 3782–3788 (2002).
    • 37 Vissa VD, Brennan PJ. The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol. 2(8), 1 (2001).
    • 38 Rhoades ER, Streeter C, Turk J et al. Characterization of sulfolipids of Mycobacterium tuberculosis H37Rv by multiple-stage linear ion-trap high-resolution mass spectrometry with electrospray ionization reveals that the family of sulfolipid II predominates. Biochemistry 50(42), 9135–9147 (2011).
    • 39 Chatterjee D, Khoo KH, McNeil MR, Dell A, Morris HR, Brennan PJ. Structural definition of the non-reducing termini of mannose-capped LAMfrom Mycobacterium tuberculosis through selective enzymatic degradationand fast atom bombardment-mass spectrometry. Glycobiol. 3, 497–506 (1993).
    • 40 Chatterjee D, Khoo KH. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan withprofound physiological effects. Glycobiol. 8, 113–120 (1998).
    • 41 Kai M, Fujita Y, Maeda Y, Nakata N. Identification of trehalose dimycolate (cord factor) in Mycobacterium leprae. FEBS Lett. 581(18), 3345–3350 (2007).
    • 42 Quadri LE. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit. Rev. Biochem. Mol. Biol. 49(3), 179–211 (2014).
    • 43 Spencer JS, Brennan PJ. The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Lepr. Rev. 82(4), 344 (2011).
    • 44 Dagur PK, Sharma B, Upadhyay R et al. Phenolic-glycolipid-1 and lipoarabinomannan preferentially modulate TCR- and CD28-triggered proximal biochemical events, leading to T-cell unresponsiveness in mycobacterial diseases. Lipids Health Dis. 11(1), 1 (2012).
    • 45 Ng V, Zanazzi G, Timpl R et al. Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103(3), 511–524 (2000). • M. leprae has a unique preference for Schwann cells. This publication explains why and at the same time highlights the importance of phenolic glycolipid-1 in M. leprae.
    • 46 Murray RA, Siddiqui MR, Mendillo M, Krahenbuhl J, Kaplan G. Mycobacterium leprae inhibits dendritic cell activation and maturation. J. Immunol. 178(1), 338–344 (2007).
    • 47 Tabouret G, Astarie-Dequeker C, Demangel C et al. Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes. PLoS Pathog. 6(10), e1001159 (2010).
    • 48 Schlesinger LS, Horwitz MA. Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J. Exp. Med. 174(5), 1031–1038 (1991).
    • 49 Ortalo-Magne A, Lemassu A, Laneelle M-A et al. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178(2), 456–461 (1996).
    • 50 Lastória JC, Abreu MA. Leprosy: a review of laboratory and therapeutic aspects – part 2. An. Bras. Dermatol. 89(3), 389–401 (2014). •• Gives a good account of various diagnostic candidates of leprosy.
    • 51 Levy RA, De Meis E, Pierangeli S. An adapted ELISA method for differentiating pathogenic from nonpathogenic aPL by a beta 2 glycoprotein I dependency anticardiolipin assay. Thromb. Res. 114(5), 573–577 (2004).
    • 52 Van Der Meer-Janssen YP, Van Galen J, Batenburg JJ, Helms JB. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 49(1), 1–26 (2010).
    • 53 Chatterjee K, Gupta ND, De M. Electron microscopic observations on the morphology of Mycobacterium leprae. Exp. Cell Res. 18(3), 521–527 (1959).
    • 54 de Mattos KA, Sarno EN, Pessolani MC, Bozza PT. Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis. Mem. Inst. Oswaldo Cruz 107, 156–166 (2012). •• First of its kind which gives a very good account of the contribution of lipid droplets (LDs) in the survival and virulence of M. leprae.
    • 55 Elamin AA, Stehr M, Singh M. Lipid droplets and Mycobacterium leprae infection. J. Pathog. 2012, 361374 (2012).
    • 56 Mattos KA, D'avila H, Rodrigues LS et al. Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J. Leukoc. Biol. 87(3), 371–384 (2010). • Mechanisms governing the formation of LDs are given in detail as their role as immunomodulatory platforms.
    • 57 Bozza PT, Magalhães KG, Weller PF. Leukocyte lipid bodies-biogenesis and functions in inflammation. Biochim. Biophys. Acta 1791(6), 540–551 (2009).
    • 58 Deb C, Lee C-M, Dubey VS et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4(6), e6077 (2009).
    • 59 Vergne I, Chua J, Singh SB, Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20, 367–394 (2004).
    • 60 Meena LS. Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J. 277(11), 2416–2427 (2010).
    • 61 Cole S, Brosch R, Parkhill J et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685), 537–544 (1998).
    • 62 Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7(6), e1002093 (2011). •• Mechanism of LD formation in M. tuberculosis is explained and origin of lipids which constitute it. Source of nutrition for M. tuberculosis during dormancy is well documented.
    • 63 Low KL, Shui G, Natter K et al. Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin. J. Biol. Chem. 285(28), 21662–21670 (2010).
    • 64 Gautam US, Sikri K, Vashist A, Singh V, Tyagi JS. Essentiality of DevR/DosR interaction with SigA for the dormancy survival program in Mycobacterium tuberculosis. J. Bacteriol. 196(4), 790–799 (2014).
    • 65 Gautam US, Mcgillivray A, Mehra S et al. DosS is required for the complete virulence of Mycobacterium tuberculosis in mice with classical granulomatous lesions. Am. J. Respir. Cell Mol. Biol. 52(6), 708–716 (2015).
    • 66 Salamon H, Bruiners N, Lakehal K et al. Cutting edge: vitamin D regulates lipid metabolism in Mycobacterium tuberculosis infection. J. Immunol. 193(1), 30–34 (2014).
    • 67 Robinson N, Kolter T, Wolke M, Rybniker J, Hartmann P, Plum G. Mycobacterial phenolic glycolipid inhibits phagosome maturation and subverts the pro-inflammatory cytokine response. Traffic 9(11), 1936–1947 (2008).
    • 68 Mattos KA, Oliveira VC, Berrêdo-Pinho M et al. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment. Cell. Microbiol. 16(6), 797–815 (2014). •• Establishes cholesterol as one of the most important lipid for M. leprae as well as a future drug candidate.
    • 69 Cruz D, Watson AD, Miller CS et al. Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. J. Clin. Invest. 118(8), 2917–2928 (2008).
    • 70 Brennan PJ. Mycobacterium leprae – the outer lipoidal surface. J. Biosci. 6(5), 685–689 (1984).
    • 71 Fisher CA, Barksdale L. Cytochemical reactions of human leprosy bacilli and mycobacteria: ultrastructural implications. J. Bacteriol. 113(3), 1389–1399 (1973).
    • 72 Kaplan G, Van Voorhis WC, Sarno EN, Nogueira N, Cohn ZA. The cutaneous infiltrates of leprosy. A transmission electron microscopy study. J. Exp. Med. 158(4), 1145–1159 (1983).
    • 73 Sakurai I, Skinsnes O. Lipids in leprosy. 1. Histochemistry of lipids in murine leprosy. Int. J. Lepr. 38(4), 379–388 (1970).
    • 74 Degang Y, Akama T, Hara T et al. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages. PLoS Negl. Trop. Dis. 6(12), e1936 (2012).
    • 75 Tanigawa K, Degang Y, Kawashima A et al. Essential role of hormone-sensitive lipase (HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected macrophages. Microb. Pathog. 52(5), 285–291 (2012). • Highlights the host dependency of M. leprae for lipolytic enzymes.
    • 76 Suzuki K, Takeshita F, Nakata N, Ishii N, Makino M. Localization of CORO1A in the macrophages containing Mycobacterium leprae. Acta Histochem. Cytochem. 39(4), 107–112 (2006).
    • 77 Kim MJ, Wainwright HC, Locketz M et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2(7), 258–274 (2010).
    • 78 Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KV. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe. 12(5), 669–681 (2012).
    • 79 Betz M, Fox B. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146(1), 108–113 (1991).
    • 80 Kiszewski A, Becerril E, Baquera J, Ruiz-Maldonado R, Hernandez Pando R. Expression of cyclooxygenase type 2 in lepromatous and tuberculoid leprosy lesions. Br. J. Dermatol. 148(4), 795–798 (2003).
    • 81 Schmid B, Rippmann JF, Tadayyon M, Hamilton BS. Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochem. Biophys. Res. Commun. 328(4), 1073–1082 (2005).
    • 82 Samsa MM, Mondotte JA, Iglesias NG et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 5(10), e1000632 (2009).
    • 83 D'avila H, Roque NR, Cardoso RM, Castro-Faria-Neto HC, Melo RC, Bozza PT. Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E2 production by macrophages. Cell. Microbiol. 10(12), 2589–2604 (2008).
    • 84 Persson J, Nilsson J, Lindholm MW. Interleukin-1beta and tumour necrosis factor-alpha impede neutral lipid turnover in macrophage-derived foam cells. BMC Immunol. 9(1), 1 (2008).
    • 85 Marques MaM, Berrêdo-Pinho M, Rosa TL et al. The essential role of cholesterol metabolism in the intracellular survival of Mycobacterium leprae is not coupled to central carbon metabolism and energy production. J. Bacteriol. 197(23), 3698–3707 (2015).
    • 86 Astarie-Dequeker C, Le Guyader L, Malaga W et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog. 5(2), e1000289 (2009).
    • 87 Lee W, Vanderven BC, Fahey RJ, Russell DG. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288(10), 6788–6800 (2013).
    • 88 Luo M, Fadeev EA, Groves JT. Mycobactin-mediated iron acquisition within macrophages. Nat. Chem. Biol. 1(3), 149–153 (2005).
    • 89 Singh P, Cole ST. Mycobacterium leprae: genes, pseudogenes and genetic diversity. Future Microbiol. 6(1), 57–71 (2011).
    • 90 Wheeler P. Oxidation of carbon sources through the tricarboxylic acid cycle in Mycobacterium leprae grown in armadillo liver. Microbiology 130(2), 381–389 (1984).
    • 91 Singh VK, Srivastava V, Singh V et al. Overexpression of Rv3097c in Mycobacterium bovis BCG abolished the efficacy of BCG vaccine to protect against Mycobacterium tuberculosis infection in mice. Vaccine 29(29), 4754–4760 (2011).
    • 92 Saxena AK, Roy KK, Singh S et al. Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia. Int. J. Antimicrob. Agents 42(1), 27–35 (2013).
    • 93 Singh G, Arya S, Kaur J. Rv2485c, a putative lipase of M. tuberculosis: expression, purification and biochemical characterization. Int. J. Trop. Dis. Health 4(1), 1–17 (2014).
    • 94 Singh G, Arya S, Narang D et al. Characterization of an acid inducible lipase Rv3203 from Mycobacterium tuberculosis H37Rv. Mol. Biol. Rep. 41(1), 285–296 (2014).
    • 95 Singh G, Arya S, Kumar A, Narang D, Kaur J. Molecular characterization of oxidative stress-inducible LipD of Mycobacterium tuberculosis H37Rv. Curr. Microbiol. 68(3), 387–396 (2014).
    • 96 Shen G, Chandra D, Serveau Avesque C, Maurin D, Canaan S, Laal S. LipC(Rv0220) is an immunogenic cell surface esterase of Mycobacterium tuberculosis. Infect. Immun. 80, 243–253 (2012).
    • 97 Richter L, Saviola B. The lipF promoter of Mycobacteriumtuberculosis is upregulated specifically by acidic pH but not by otherstress conditions. Microbiol. Res. 164, 228–232 (2009).
    • 98 Zhang M, Wang J, Li Z, Xie J, Yang Y, Zhong Y, Wang H. Expression and characterization of the carboxylesterase Rv3487c from Mycobacterium tuberculosis. Prot. Exp. Purific. 42, 59–66 (2005).
    • 99 Camacho LR, Ensergueix D, Perez E, Gicquel B. Identification of a virulence genecluster of Mycobacterium tuberculosis bysignature-tagged transposon mutagenesis. Mol. Microbiol. 34(2), 257–267 (1999).
    • 100 Canaan S, Maurin D, Chahinian H, Pouilly B, Durousseau C, Frassinetti F, Bourne Y. Expression andcharacterization of the protein Rv1399c from Mycobacterium tuberculosis. Biochem. 271, 3953–3961 (2004).
    • 101 Lee JH, Karakousis PC, Bishai WR. Roles of SigB and SigF in the Mycobacterium tuberculosis sigma factornetwork. J. Bacteriol. 190(2), 699–707 (2008).
    • 102 Sinha SC, Wetterer M, Sprang SR, Schultz JE, Linder JU. Origin of asymmetryin adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c. EMBO J. 24(4), 663–673 (2005).
    • 103 Gu S, Chen J, Dobos KM, Bradbury EM, Belisle JT, Chen X. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol. Cell Proteomics 2(12), 1284–1296 (2003).
    • 104 Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. Characterization of LipN (Rv2970c) of Mycobacterium tuberculosis H37Rv and its probable role inxenobiotic degradation. J. Cell Biochem. 117, 390–401 (2016).
    • 105 Singh R, Singh A, Tyagi AK. Deciphering the genes involved inpathogenesis of Mycobacterium tuberculosis. Tuberculosis 85(5–6), 325–335 (2005).
    • 106 Dahl JL, Kraus CN, Boshoff HIM, Doan B, Foley K, Avarbock D, Kaplan G, Mizraji V, Barry CE. The role of Rel(Mtb)-mediated adaptation to stationaryphase in long-term persistence of Mycobacterium tuberculosis inmice. Proc. Natl Acad. Sci. 100, 10026–10031 (2003).
    • 107 Sheline KD, France AM, Talarico S, Foxman B, Zhang L, Marrs CF, Yang Z. Does the lipR gene of tuberclebacilli have a role in tuberculosis transmission and pathogenesis?. Tuberculosis 89, 114–119 (2009).
    • 108 Galagan JE, Minch K, Peterson M, Lyubetskaya A. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183 (2013).
    • 109 Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvationmodel of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731 (2002).
    • 110 Rindi L, Fattorini L, Bonanni D et al. Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice. Microbiology 148(12), 3873–3880 (2002).
    • 111 Daniel J, Sirakova T, Kolattukudy P. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy. PLoS ONE 9(12), e114877 (2014).
    • 112 Akama T, Tanigawa K, Kawashima A, Wu H, Ishii N, Suzuki K. Analysis of Mycobacterium leprae gene expression using DNA microarray. Microb. Pathog. 49(4), 181–185 (2010).
    • 113 Sirakova TD, Dubey VS, Deb C et al. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152(9), 2717–2725 (2006).
    • 114 Boritsch EC, Frigui W, Cascioferro A et al. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat. Microbiol. 1, 15019 (2016). • Establishes pks as a marker of virulence for M. tuberculosis and marks the evolution of M. tuberculosis from less virulent mycobacteria like M. canetti.
    • 115 Onwueme KC, Ferreras JA, Buglino J, Lima CD, Quadri LE. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc. Natl Acad. Sci. USA 101(13), 4608–4613 (2004).
    • 116 Fujiwara T, Hunter S, Cho S, Aspinall G, Brennan P. Chemical synthesis and serology of disaccharides and trisaccharides of phenolic glycolipid antigens from the leprosy bacillus and preparation of a disaccharide protein conjugate for serodiagnosis of leprosy. Infect. Immun. 43(1), 245–252 (1984).
    • 117 Al-Mubarak R, Vander Heiden J, Broeckling CD, Balagon M, Brennan PJ, Vissa VD. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: potential markers for susceptibility and pathogenesis. PLoS Negl. Trop. Dis. 5(9), e1303 (2011).
    • 118 Yang L, Ding Y, Chen Y, Zhang S, Huo C, Wang Y, Yu J. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 53, 1245–1253 (2012).
    • 119 Camacho LR, Constant P, Raynaud C et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 276(23), 19845–19854 (2001).