We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An overview of the myocardial regeneration potential of cardiac c-Kit+ progenitor cells via PI3K and MAPK signaling pathways

    Ezzatollah Fathi

    Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran

    ,
    Behnaz Valipour

    Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

    ,
    Ilja Vietor

    Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria

    &
    Raheleh Farahzadi

    *Author for correspondence: Tel.: +9841 3337 3879; Fax: +9841 3336 3870;

    E-mail Address: farahzadir@tbzmed.ac.ir

    Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran

    Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

    Published Online:https://doi.org/10.2217/fca-2018-0049

    In recent years, several studies have investigated cell transplantation as an innovative strategy to restore cardiac function following heart failure. Previous studies have also shown cardiac progenitor cells as suitable candidates for cardiac cell therapy compared with other stem cells. Cellular kit (c-kit) plays an important role in the survival and migration of cardiac progenitor cells. Like other types of cells, in the heart, cellular responses to various stimuli are mediated via coordinated pathways. Activation of c-kit+ cells leads to subsequent activation of several downstream mediators such as PI3K and the MAPK pathways. This review aims to outline current research findings on the role of PI3K/AKT and the MAPK pathways in myocardial regeneration potential of c-kit+.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Wen Z, Mai Z, Zhang H et al. Local activation of cardiac stem cells for post-myocardial infarction cardiac repair. J. Cell. Mol. Med. 16(11), 2549–2563 (2012). •• Provides potential kinds of stem/progenitor cells for heart cell therapy.
    • 2. Li C, Matsushita S, Li Z et al. c-kit positive cardiac outgrowth cells demonstrate better ability for cardiac recovery against ischemic myopathy. J. Stem. Cell. Res. Ther. 7(10), 1–17 (2017).
    • 3. Le T, Chong J. Cardiac progenitor cells for heart repair. Cell. Death Discov. 2 16052 (2016).
    • 4. Makino S, Fukuda K, Miyoshi S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clinic. Investig. 103(5), 697–705 (199).
    • 5. Khan AR, Farid TA, Pathan A et al. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a systematic review and meta-analysis. Circ. Res. 118(6), 984–993 (2016).
    • 6. Nikravesh MR, Jalali M, Ghafaripoor HA et al. Therapeutic potential of umbilical cord blood stem cells on brain damage of a model of stroke. J. Cardiovasc. Thorac. Res. 3(4), 117–122 (2011).
    • 7. Ahmed RP, Ashraf M, Buccini S et al. Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction. Regen. Med. 6(2), 171–178 (2011).
    • 8. Zhang Y, Wang D, Chen M et al. Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS ONE 6(4), e19012 (2011).
    • 9. Bergmann O, Bhardwaj RD, Bernard S et al. Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009).
    • 10. Bu L, Jiang X, Martin-Puig S et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460(7251), 113–117 (2009).
    • 11. Amini H, Rezaie J, Vosoughi A et al. Cardiac progenitor cells application in cardiovascular disease. J. Cardiovasc. Thorac. Res. 9(3), 127–132 (2017).
    • 12. Hassanpour M, Cheraghi O, Siavashi V et al. A reversal of age-dependent proliferative capacity of endothelial progenitor cells from different species origin in in vitro condition. J. Cardiovasc. Thorac. Res. 8(3), 102–106 (2016).
    • 13. Le T, Chong J. Cardiac progenitor cells for heart repair. Cell. Death Discov. 2(16052), 1–4 (2016).
    • 14. Mozaffarian D, Benjamin EJ, Go AS et al. Heart disease and stroke statistics – 2016 update a report from the American Heart Association. Circulation 133(4), e38–e48 (2016). •• Provides considerable clinical trials and in vivo studies for heart regeneration.
    • 15. Fernández-Avilés F, Sanz-Ruiz R, Climent A et al. TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) Writing Group; Authors/Task Force Members. Chairpersons; Basic Research Subcommittee. Transl. Res. 2532–2546 (2017).
    • 16. Fernández-Avilés F, Sanz-Ruiz R, Climent AM et al. Global overview of the transnational alliance for regenerative therapies in cardiovascular syndromes (TACTICS) recommendations: a comprehensive series of challenges and priorities of cardiovascular regenerative medicine. Circ. Res. 122, 199–201 (2018).
    • 17. Povsic TJ, O'Connor CM, Henry T et al. A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. J. Am. Heart Assoc. 162(4), 654–662. e651 (2011).
    • 18. Gepstein L, Ding C, Rehemedula D et al. In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells 28(12), 2151–2161 (2010).
    • 19. Martin-Rendon E, Brunskill SJ, Hyde CJ et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J. 29(15), 1807–1818 (2008).
    • 20. Schächinger V, Erbs S, Elsässer A et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J. 27(23), 2775–2783 (2006).
    • 21. Stamm C, Kleine H-D, Choi Y-H et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J. Thorac. Cardiovasc. Surg. 133(3), 717–725. e715 (2007).
    • 22. Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(Suppl. 2), II-247–II-256 (1999).
    • 23. Liu Y, Li Z, Liu T et al. Impaired cardioprotective function of transplantation of mesenchymal stem cells from patients with diabetes mellitus to rats with experimentally induced myocardial infarction. Cardiovasc. Diabetol. 12(1), 40–50 (2013).
    • 24. Lin X, Peng P, Cheng L et al. A natural compound induced cardiogenic differentiation of endogenous MSCs for repair of infarcted heart. Differentiation 83(1), 1–9 (2012).
    • 25. Kocher A, Schuster M, Szabolcs M et al. Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7(4), 430–436 (2001).
    • 26. Senyo SE, Steinhauser ML, Pizzimenti CL et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432), 433–436 (2013). • Provides multipotency and pluripotency features of stem cells for myocardial regeneration.
    • 27. Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6), 763–776 (2003).
    • 28. Chong JJ, Forte E, Harvey RP. Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem. Cell. Res. 13(3 Pt B), 592–614 (2014).
    • 29. Anversa P. Myocyte death and growth in the failing heart. Lab. Invest. 78, 767–786 (1998).
    • 30. Laugwitz K-L, Moretti A, Lam J et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026), 647–653 (2005).
    • 31. Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA. 100(21), 12313–12318 (2003).
    • 32. Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95(9), 911–921 (2004).
    • 33. Madigan M, Atoui R. Therapeutic use of stem cells for myocardial infarction. Bioengineering 5(2), 28–46 (2018).
    • 34. Makkar RR, Smith RR, Cheng K et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised Phase I trial. Lancet 379(9819), 895–904 (2012).
    • 35. Zhou B, Wu SM. Reassessment of c-Kit in cardiac cells: a complex interplay between expression, fate, and function. Circ. Res. 123(1), 9–11 (2018).
    • 36. Fransioli J, Bailey B, Gude NA et al. Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells 26(5), 1315–1324 (2008).
    • 37. Di Siena S, Gimmelli R, Nori SL et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell. Death. Dis. 7(7), e2317 (2016).
    • 38. Yaniz-Galende E, Chen J, Chemaly E et al. Stem cell factor gene transfer promotes cardiac repair after myocardial infarction via in situ recruitment and expansion of c-kit+ cells. Circ. Res. 111(11), 1434–1445 (2012).
    • 39. Ronnstrand L. Signal transduction via the stem cell factor receptor/c-Kit. Cell. Mol. Life Sci. 61(19–20), 2535–2548 (2004).
    • 40. Staser K, Yang FC, Clapp DW. Mast cells and the neurofibroma microenvironment. Blood 116(2), 157–164 (2010).
    • 41. Soonpaa MH, Rubart M, Field LJ. Challenges measuring cardiomyocyte renewal. Biochim. Biophys. Acta 1833(4), 799–803 (2013).
    • 42. Lázár E, Sadek HA, Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur. Heart J. 38(30), 2333–2342 (2017).
    • 43. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83(1), 15–26 (1998).
    • 44. Laflamme MA, Murry CE. Heart regeneration. Nature 473(7347), 326–335 (2011).
    • 45. Laflamme MA, Murry CE. Regenerating the heart. Nat. Biotech. 23(7), 845–856 (2005).
    • 46. Etzion S, Battler A, Barbash IM et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J. Mol. Cell. Cardiol. 33(7), 1321–1330 (2001).
    • 47. Zimmet H, Krum H. Using adult stem cells to treat heart failure – fact or fiction? Heart. Lung. Circ. 17, S48–S54 (2008).
    • 48. Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85(3), 221–228 (1999).
    • 49. Liu N, Qi X, Han Z et al. Bone marrow is a reservoir for cardiac resident stem cells. Sci. Rep. 6(28739), 1–10 (2016).
    • 50. Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015). Stem. Cell. Res. Ther. 7(1), 82–107 (2016).
    • 51. Leong YY, Ng WH, Ellison-Hughes GM et al. Cardiac stem cells for myocardial regeneration: they are not alone. Front. Cardiovasc. Med. 4(47), 1–13 (2017).
    • 52. Guerra S, Leri A, Wang X et al. Myocyte death in the failing human heart is gender dependent. Circ. Res. 85(9), 856–866 (1999).
    • 53. Anversa P, Kajstura J, Leri A et al. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113(11), 1451–1463 (2006).
    • 54. Davis DR, Zhang Y, Smith RR et al. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS ONE 4(9), e7195 (2009).
    • 55. Li C, Matsushita S, Li Z et al. c-kit positive cardiac outgrowth cells demonstrate better ability for cardiac recovery against ischemic myopathy. J. Stem. Cell. Res. Ther. 7(10), 1–17 (2017).
    • 56. Valente M, Nascimento DS, Cumano A et al. Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev. 23(19), 2263–2273 (2014).
    • 57. Hensley MT, De Andrade J, Keene B et al. Cardiac regenerative potential of cardiosphere-derived cells from adult dog hearts. J. Cell. Mol. Med. 19(8), 1805–1813 (2015).
    • 58. He JQ, Vu DM, Hunt G et al. Human cardiac stem cells isolated from atrial appendages stably express c-kit. PLoS ONE 6(11), e27719 (2011).
    • 59. Linke A, Müller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA 102(25), 8966–8971 (2005).
    • 60. Ellison GM, Vicinanza C, Smith AJ et al. Adult c-kit pos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154(4), 827–842 (2013).
    • 61. Tang XL, Rokosh G, Sanganalmath SK et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121(2), 293–305 (2010).
    • 62. Fazel S, Cimini M, Chen L, Li S, Angoulvant D et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest. 116(7), 1865–1877 (2006).
    • 63. Makkar RR, Smith RR, Cheng K et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised Phase I trial. Lancet 379(9819), 895–904 (2012). •• Provides signaling pathways involved in cardiomyocyte differentiation and regeneration.
    • 64. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 20(24), 3347–3365 (2006).
    • 65. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50), 7455–7464 (2005).
    • 66. Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell. 18(1), 13–24 (2005).
    • 67. Klinz F, Bloch W, Addicks K et al. Inhibition of phosphatidylinositol-3-kinase blocks development of functional embryonic cardiomyocytes. Exp. Cell Res. 247(1), 79–83 (1999).
    • 68. Naito AT, Tominaga A, Oyamada M et al. Early stage-specific inhibitions of cardiomyocyte differentiation and expression of Csx/Nkx-2.5 and GATA-4 by phosphatidylinositol 3-kinase inhibitor LY294002. Exp. Cell Res. 291(1), 56–69 (2003).
    • 69. Faramoushi M, Amir Sasan R, Sari Sarraf V et al. Cardiac fibrosis and down regulation of GLUT4 in experimental diabetic cardiomyopathy are ameliorated by chronic exposures to intermittent altitude. J. Cardiovasc. Thorac. Res. 8(1), 26–33 (2016).
    • 70. Naito AT, Akazawa H, Takano H et al. Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis by regulating canonical Wnt signaling. Circ. Res. 97(2), 144–151 (2005).
    • 71. Ghosh-Choudhury N, Abboud SL, Nishimura R et al. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J. Biol. Chem. 277(36), 33361–33368 (2002).
    • 72. Vajravelu BN, Hong KU, Al-Maqtari T et al. C-Kit promotes growth and migration of human cardiac progenitor cells via the PI3K-AKT and MEK-ERK pathways. PLoS ONE 10(10), e0140798 (2015).
    • 73. Shi B, Deng W, Long X et al. miR-21 increases c-kit(+) cardiac stem cell proliferation in vitro through PTEN/PI3K/Akt signaling. PeerJ. 5, e2859 (2017).
    • 74. Shi B, Wang Y, Zhao R et al. Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS ONE 13(2), e0191616 (2018).
    • 75. Kuang D, Zhao X, Xiao G et al. Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res. Cardiol. 103(3), 265–273 (2008).
    • 76. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol. Rev. 90(4), 1507–1546 (2010).
    • 77. Qi M, Elion EA. MAP kinase pathways. J. Cell Sci. 118(Pt 16), 3569–3572 (2005).
    • 78. Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int. J. Biochem. Cell Biol. 40(12), 2707–2719 (2008).
    • 79. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81(2), 807–869 (2001).
    • 80. Avruch J. MAP kinase pathways: the first twenty years. Biochim. Biophys. Acta 1773(8), 1150–1160 (2007).
    • 81. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24(1), 21–44 (2006).
    • 82. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol. Rev. 90(4), 1507–1546 (2010).
    • 83. Bueno OF, De Windt LJ, Tymitz KM et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19(23), 6341–6350 (2000).
    • 84. Ruppert C, Deiss K, Herrmann S et al. Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc. Natl Acad. Sci. USA. 110(18), 7440–7445 (2013).
    • 85. Dell'Era P, Ronca R, Coco L et al. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ. Res. 93(5), 414–420 (2003).
    • 86. Schönwasser DC, Marais RM, Marshall CJ et al. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol. Cell. Biol. 18(2), 790–798 (1998).
    • 87. Patel AL, Shvartsman SY. Outstanding questions in developmental ERK signaling. Development 145(14), dev143818 (2018).
    • 88. Hubert F, Payan SM, Rochais F. FGF10 signaling in heart development, homeostasis, disease and repair. Front. Genet. 9(599), 1–7 (2018).
    • 89. Fathi E, Nassiri SM, Atyabi N et al. Induction of angiogenesis via topical delivery of basic-fibroblast growth factor from polyvinyl alcohol–dextran blend hydrogel in an ovine model of acute myocardial infarction. J. Tissue. Eng. Regen. Med. 7(9), 697–707 (2013).